Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 5085–5098 | Cite as

The impact of disturbance and ensuing forestry practices on Collembola in monitored stands of windthrown forest in the Tatra National Park (Slovakia)

  • Peter ČuchtaEmail author
  • Dana Miklisová
  • Ľubomír Kováč
Article

Abstract

Soil Collembola communities were investigated in spruce forest stands of the High Tatra Mts that had been heavily damaged by a windstorm in November 2004 and subsequently by a wildfire in July 2005. The study focused on the impact of these disturbances and forestry practices on collembolan community distribution and structure 4 years after the disturbance. Four different treatments were selected for this study: intact forest stands (REF), non-extracted windthrown stands (NEX), clear-cut windthrown stands (EXT) and burnt windthrown stands (FIR). From a total of 7,820 individuals, 72 species were identified. The highest total abundance mean was recorded in FIR stands followed by NEX and EXT stands and, surprisingly, the lowest in REF stands. The highest total species richness was observed in REF stands, followed by NEX stands and FIR stands and the lowest in EXT stands. In REF and NEX stands, the most abundant species were Folsomia penicula and Tetracanthella fjellbergi, while in heavily damaged stands, the most abundant was Anurophorus laricis. The ordination method used demonstrated a significant influence of treatment on the abundance of Collembola. ANOVA used confirmed significant differences for all dominant species between treatments. The present study shows the negative impact of windthrow on Collembola communities as reflected in decreased species richness and abundance. However, disturbance by fire caused a considerable increase in collembolan abundance 3 years after the event. Moreover, we show that clearing of windthrown spruce forests after a windstorm is less favourable for communities of soil collembolans and slows down the recovery process.

Keywords

Windthrow Wildfire Disturbance Collembola Clearing High Tatra Mts 

Notes

Acknowledgments

The study was supported by the Slovak Scientific Grant Agency VEGA project no. 1/0282/11. We wish to thank Dr. Karel Tajovský and Prof. Šantrůčková (Biological Centre CAS, České Budějovice) for the soil chemical analyses. We thank also Dr. Peter Fleischer and Dr. Barbara Chovancová (Administration of the Tatra National Park, Tatranská Lomnica) for their help during the field work. We are grateful to Kieran Green for language revision of the manuscript.

References

  1. Bretfeld, G. (1999). Symphypleona. In W. Dunger (Ed.), Synopses on Palaearctic Collembola, vol. 2. Abhandlungen und Berichte des Naturkundemuseums, Görlitz.Google Scholar
  2. Brůhová, J., & Rusek, J. (2005). Epigeic activity of eight common Collembola species in spruce forests and clearings after dark beetle outbreaks in the Šumava National Park, Czech republic. In K. Tajovský, J. Schlaghamerský, & V. Pižl (Eds.), Contributions to soil zoology in Central Europe I (pp. 1–5). České Budĕjovice: ISB AS CR.Google Scholar
  3. Čerevková, A., & Renčo, M. (2009). Soil nematode community changes associated with windfall and wildfire in forest soil at the High Tatras National Park, Slovak Republic. Helminthologia, 46, 123–130.CrossRefGoogle Scholar
  4. Coleman, T. W., & Rieske, L. K. (2006). Arthropod response to prescription burning at the soil–litter interface in oak-pine forests. Forest Ecology and Management, 233, 52–60.CrossRefGoogle Scholar
  5. Crossley, D. A., & Blair, J. M. (1991). A high efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agriculture, Ecosystems and Environment, 34, 187–192.CrossRefGoogle Scholar
  6. Čuchta, P., Kováč, Ľ., Miklisová, D. (2009). The effect of windthrow in the spruce forests of the High Tatras (Slovakia) on soil microarthropods one year after a severe wind calamity with special reference to Collembola (Hexapoda). In K. Tajovský, J. Schlaghamerský, V. Pižl (Eds.), Contributions to soil zoology in Central Europe III (pp. 13–18). České Budějovice: ISB AS CR, v.v.i..Google Scholar
  7. Čuchta, P., Kováč, Ľ., & Miklisová, D. (2010). Abundance of ten common Collembola species in spruce forests in the High Tatra Mts (Slovakia) three years after windthrow. Acta Societatis Zoologicae Bohemicae, 74, 21–29.Google Scholar
  8. Čuchta, P., Miklisová, D., & Kováč, Ľ. (2012a). Changes within collembolan communities in windthrown European montane spruce forests two years after disturbance by fire. Annals of Forest Science, 69, 81–92.CrossRefGoogle Scholar
  9. Čuchta, P., Miklisová, D., & Kováč, Ľ. (2012b). A three-year study of soil Collembola communities in spruce forest stands of the High Tatra Mts (Slovakia) after a catastrophic windthrow event. European Journal of Soil Biology, 50, 151–158.CrossRefGoogle Scholar
  10. Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., et al. (2001). Climate change and forest disturbances. BioScience, 51, 723–734.CrossRefGoogle Scholar
  11. Deharveng, L. (1996). Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France). Conservation Biology, 10, 74–84.CrossRefGoogle Scholar
  12. Dress, W. J., & Boerner, R. E. J. (2004). Patterns of microarthropod abundance in oak-hickory forest ecosystems in relation to prescribed fire and landscape position. Pedobiologia, 48, 1–8.CrossRefGoogle Scholar
  13. Duelli, P., Obrist, M. K., & Wermelinger, B. (2002). Windthrow-induced changes in faunistic biodiversity in alpine spruce forests. Forest Snow and Landscape Research, 77, 117–131.Google Scholar
  14. Falťan, V., Bánovský, M., Jančuška, D., Saksa, M. (2008). Zmeny krajinnej pokrývky úpätia Vysokých Tatier po veternej kalamite. Bratislava: Geo-grafika. (in Slovak)Google Scholar
  15. Fjellberg, A. (1998). The Collembola of Fennoscandia and Denmark, Part I: Poduromorpha. In N.P. Kristensen, V. Michelsen (Eds.), Fauna Entomologica Scandinavica, vol. 35, Brill.Google Scholar
  16. Gömöryová, E., Střelcová, K., Škvarenina, J., Bebej, J., & Gömöry, D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil and Water Research, 3, 74–80.Google Scholar
  17. Gömöryová, E., Střelcová, K., Fleischer, P., & Gömöry, D. (2011). Soil microbial characteristics at the monitoring plots on windthrow areas of the Tatra National Park (Slovakia): their assessment as environmental indicators. Environmental Monitoring and Assessment, 174, 31–45.CrossRefGoogle Scholar
  18. Henig-Sever, N., Poliakov, D., & Broza, M. (2001). A novel method for estimation of wild fire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45, 98–106.CrossRefGoogle Scholar
  19. Ilisson, T., Köster, K., Vodde, F., & Jõgiste, K. (2007). Regeneration development 4–5 years after a storm in Norway spruce dominated forests, Estonia. Forest Ecology and Management, 250, 17–24.CrossRefGoogle Scholar
  20. Johnstone, J. F., & Stuart Chapin, F., III. (2006). Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems, 9, 14–31.CrossRefGoogle Scholar
  21. Jonášová, M., Vávrová, E., & Cudlín, P. (2010). Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. Forest Ecology and Management, 259, 1127–1134.CrossRefGoogle Scholar
  22. Králová, M., Dražďák, K., Pospíšil, F., Hadačová, V., Klozová, E., Luštinec, J., et al. (1991). Vybrané metody chemické analýzy půd a rostlin. Prague: Academia. in Czech.Google Scholar
  23. Kubíková, J. (1970). Geobotanické praktikum. Prague: SPN. (in Czech)Google Scholar
  24. Kunca, A., Zúbrik, M. (2006). Vetrová kalamita z 19. novembra 2004. Zvolen: Národné lesnícke centrum. (in Slovak)Google Scholar
  25. Malmström, A., Perrson, T., Ahlström, K., Gongalsky, K. B., & Bengtsson, J. (2009). Dynamics of soil meso- and macrofauna during a 5-year period after clear-cut burning in a boreal forest. Applied Soil Ecology, 43, 61–74.CrossRefGoogle Scholar
  26. McCune, B., Mefford, M.J. (2011). PC-ORD. Multivariate analysis of ecological data. Version 6.07. Gleneden Beach: MjM Software.Google Scholar
  27. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  28. Nedoma, J. (1990). Práce s iontově selektivními elektrodami. Rostlinná výroba, 36, 667–670. (in Czech).Google Scholar
  29. Pomorski, R.J. (1998). Onychiurinae of Poland (Collembola: Onychiuridae). Wrocław: BS.Google Scholar
  30. Ponge, J.-F. (2003). Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry, 35, 935–945.CrossRefGoogle Scholar
  31. Ponge, J.-F., Dubs, F., Gillet, S., Sousa, J. P., & Lavelle, P. (2006). Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. Soil Biology and Biochemistry, 38, 1158–1161.CrossRefGoogle Scholar
  32. Potapov, M.B. (2001). Isotomidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola, vol. 3. Abhandlungen und Berichte des Naturkundemuseums, Görlitz.Google Scholar
  33. Rusek, J. (1998). Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation, 7, 1207–1219.CrossRefGoogle Scholar
  34. Rusek, J. (2006). Závĕrečná zpráva o řešení projektu VaV za roky 2004–2005. Projekt VaV ev. č. SM/6/1/04 „Výzkum a monitoring biodiverzity půdní fauny a humusu ve smrčinách postižených kůrovcem v CHKO Šumava“. České Budĕjovice: BC AV ČR, Ústav půdní biologie. (in Czech)Google Scholar
  35. Šantrůčková, H., Tahovská, K., & Kopáček, J. (2009). Nitrogen transformations and pools in N-saturated mountain spruce forest soils. Biology and Fertility of Soils, 45, 395–404.CrossRefGoogle Scholar
  36. Schelhaas, M. J., Nabuurs, G. J., & Schuck, A. (2003). Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9, 1620–1633.CrossRefGoogle Scholar
  37. Siira-Pietikäinen, A., & Haimi, J. (2009). Changes in soil fauna 10 years after forest harvesting: comparison between clear felling and green-tree retention methods. Forest Ecology and Management, 258, 332–338.CrossRefGoogle Scholar
  38. Šoltés, R., Školek, J., Homolová, Z., & Kyselová, Z. (2010). Early successional pathways in the Tatra Mountains (Slovakia) forest ecosystems following natural disturbances. Biologia, 65, 958–964.CrossRefGoogle Scholar
  39. Sommers, L. E., & Nelson, D. W. (1972). Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure. Proceedings - Soil Science Society of America, 36, 902–904.CrossRefGoogle Scholar
  40. StatSoft, Inc. (2009). STATISTICA (data analysis software system), version 9.0. www.statsoft.com.
  41. Szeptycki, A. (1967). Fauna of the springtails (Collembola) of the Ojcow National Park in Poland. Acta zoologica cracoviensia, 12, 219–280.Google Scholar
  42. Tahovská, K., Kopáček, J., & Šantrůčková, H. (2010). Nitrogen availability in Norway spruce forest floor—the effect of forest defoliation induced by bark beetle infestation. Boreal Environment Research, 15, 553–564.Google Scholar
  43. Tajovský, K. (2002). Soil macrofauna (Diplopoda, Chilopoda, Onsicidea) in a pine forest disturbed by wildfire. In K. Tajovský, V. Balík, & V. Pižl (Eds.), Studies on soil fauna in Central Europe (pp. 227–232). České Budějovice: ISB AS CR.Google Scholar
  44. Thibaud, J.-M., Schulz, H.-J. da Gama Assalino, M.M. (2004). Hypogastruridae. In W. Dunger, (Ed.), Synopses on Palaearctic Collembola, vol. 4. Abhandlungen und Berichte des Naturkundemuseums, Görlitz.Google Scholar
  45. Urbanovičová, V., Kováč, Ľ., & Miklisová, D. (2010). Epigeic arthropod communities of spruce forest stands in the High Tatra Mts (Slovakia) with special reference to Collembola—first year after windthrow. Acta Societatis Zoologicae Bohemicae, 74, 21–29.Google Scholar
  46. Van Straalen, N. M. (1998). Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology, 9, 429–437.CrossRefGoogle Scholar
  47. Watanabe, F. S., & Olsen, S. R. (1965). Test of ascorbic acid method for determining phosphates in water and sodium bicarbonate extracts from soils. Proceedings—Soil Science Society of America, 29, 677–680.CrossRefGoogle Scholar
  48. Wermelinger, B., Duelli, P., Obrist, M.K. (2003). Windthrow stimulates arthropod diversity in forests. Proceedings of the International Symposium (pp. 79–82), Mantova, May 29–31, 2003.Google Scholar
  49. Wikars, L.-O., & Schimmel, J. (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecology and Management, 141, 189–200.CrossRefGoogle Scholar
  50. Zimdars, B., Dunger, W. (1994). Tullbergiinae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola, vol. 1. Abhandlungen und Berichte des Naturkundemuseums, Görlitz.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Peter Čuchta
    • 1
    Email author
  • Dana Miklisová
    • 2
  • Ľubomír Kováč
    • 1
  1. 1.Institute of Biology and Ecology, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovak Republic
  2. 2.Institute of ParasitologySlovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations