Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 5055–5070 | Cite as

Assessing the micro-phytoplankton response to nitrate in Comau Fjord (42°S) in Patagonia (Chile), using a microcosms approach

  • José Luis Iriarte
  • Silvio Pantoja
  • Humberto E. González
  • Gabriela Silva
  • Hector Paves
  • Pamela Labbé
  • Lorena Rebolledo
  • Murat Van Ardelan
  • V. Häussermann


Anthropogenic (aquaculture) changes in environment nutrient concentrations may affect phytoplankton (biomass and taxa composition) in marine coastal waters off the Chilean Patagonia. The effects of adding nitrate (NO3 ) to natural phytoplankton assemblages were evaluated considering biomass, cell abundance, and taxonomic composition. Microcosm experiments were performed in the spring, summer, and winter in the Comau Fjord located in Subantarctic Patagonia. At the end of the experiments, NO3 decreased rapidly and was undetectable in treatments, indicating a strong NO3 deficiency associated with an exponential increase in Chl-a concentrations, particulate organic nitrogen, and carbon in these treatments. Moreover, given the depleted nitrate concentrations of the spring and summer experiments, the micro-phytoplankton taxa structure shifted from mixed diatom and dinoflagellate assemblages (Ceratium spp., Dinophysis spp., Coscinodiscus sp., Rhizosolenia pungens) to assemblages dominated by blooms of the classic chain-forming diatoms found in temperate and cold waters such as Chaetoceros spp., Skeletonema spp., and Thalassiosira spp. Thus, nitrogen sources (i.e., nitrate, ammonia) may influence phytoplankton abundance and biomass accumulation dynamics in the northern section of Patagonia. It also emphasizes the importance of diatom taxa in regards to the short-term response of phytoplankton to changing environmental nutrient conditions due to natural (decreasing freshwater stream flow) and anthropogenic (aquaculture) events. This situation may be one of the future scenarios in the Patagonian fjords, thus stressing the needs for active environmental monitoring and impact assessment.


Diatoms Nitrate Chlorophyll-a Phytoplankton structure Patagonian fjords 



This research was funded by FONDECYT 1080187 (J.L. Iriarte). We thank the Huinay Foundation for providing marine laboratories and vessel facilities, as well as phytoplankton data from the Comau Fjord, and our colleagues G. Försterra and V. Häussermann for their help at the Huinay Scientific Station. We appreciate the valuable help of Patricio Ampuero and Caroll García during the experimental work and microscopic analysis, and Pirjo Huovinen for allowing us to use her submersible Ramses-ACC2-UV-VIS hyperspectral radiometer sensor (Trios Optical Sensors). This research was also partially funded by the Centro de Investigación de Ecosistemas de la Patagonia (CIEP), Programa de Financiamiento Basal COPAS–Sur Austral, and WAFOW/NTNU–Norwegian Research Council Latin American–Norway Programme. The winter experiment was part of the MSc. Thesis of Ms. Pamela Labbe at Universidad de Concepción, who was funded by a 1-year scholarship from COPAS–Sur Austral. This is publication 55 of Huinay Scientific Field Station.


  1. Acha, E. M., Mianzan, H. W., Guerrero, R. A., Fávero, M., & Bavá, J. (2004). Marine fronts at the continental shelves of austral South America physical and ecological processes. Journal of Marine System, 44, 83–105.CrossRefGoogle Scholar
  2. Alves-de-Souza, C., González, M. T., & Iriarte, J. L. (2008). Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research, 30, 1233–1243.CrossRefGoogle Scholar
  3. Aracena, C., Lange, C. B., Iriarte, J. L., Rebolledo, L., & Pantoja, S. (2011). Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjords (41–55°S) as a response to water column productivity. Continental Shelf Research, 31, 340–355.CrossRefGoogle Scholar
  4. Bodungen, v B., Wunsch, M., & Furderer, H. (1991). Sampling and analysis of suspended and sinking particles in the northern North Atlantic. In D. C. Hurd & D. W. Spencer (Eds.), Marine particles: analysis and characterization. AGU Geophysical Monography, 63, 47–56.Google Scholar
  5. Booth, B. C. (1988). Size classes and major taxonomic groups of phytoplankton at two locations in the subarctic Pacific Ocean in May and August, 1984. Marine Biology, 97, 275–286.CrossRefGoogle Scholar
  6. Bronk, D. A., Glibert, P. M., & Ward, B. B. (1994). Nitrogen uptake, dissolved organic nitrogen release, and new production. Science, 265, 1843–1846.CrossRefGoogle Scholar
  7. Clement, A. (1994). Harmful of Leptocylindrus minimus in Southern Chile. Harmful Algae News, 8, 1.Google Scholar
  8. Collos, Y. (1986). Time-lag algal growth dynamics: biological constraints on primary production in aquatic environments. Marine Ecology Progress Series, 33, 193–206.CrossRefGoogle Scholar
  9. Dávila, P., Figueroa, D., & Müller, E. (2002). Freshwater input into the coastal ocean and its relationship with the salinity distribution off austral Chile (35°–55°S). Continental Shelf Research, 22, 521–534.CrossRefGoogle Scholar
  10. Dugdale, R. C. (1967). Nutrient limitation in the sea: dynamics, identification, and significance. Limnology and Oceanography, 12, 685–695.CrossRefGoogle Scholar
  11. Fan, C., Glibert, P. M., Alexander, J., & Lomas, M. W. (2003). Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii. Marine Biology, 142, 949–958.Google Scholar
  12. Glibert, P. M., & Terlizzi, D. E. (1999). Coocurrence of elevated urea levels and dinoflagellate blooms in temperate estuarine aquaculture ponds. Applied and Environmental Microbiology, 65, 5594–5596.Google Scholar
  13. González, H. G., Calderón, M. J., Castro, L., Clement, A., Cuevas, L. A., Daneri, G., et al. (2010). Primary production and its fate in the pelagic food web of the Reloncaví Fjord and plankton dynamics of the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series, 402, 13–30.CrossRefGoogle Scholar
  14. González, H. E., Castro, L., daneri, G., Iriarte, J. L., Silva, N., Vargas, C. A., Giesecke, R., & Sanchez, N. (2011). Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the moraleda channel basin. Continental Shelf Research, 31, 225–243.Google Scholar
  15. Iriarte, J. L., & González, H. E. (2008). Phytoplankton bloom ecology of the Inner Sea of Chiloé, Southern Chile. Nova Hedwigia Beiheft, 133, 67–79.Google Scholar
  16. Iriarte, J. L., Quiñones, R. A., & González, R. R. (2005). Relationship between biomass and enzymatic activity of a bloom-forming dinoflagellate (Dynophyceae) in southern Chile (41°S): A field approach. Journal of Plankton Research, 27, 159–166.CrossRefGoogle Scholar
  17. Iriarte, J. L., González, H. E., Liu, K. K., Rivas, C., & Valenzuela, C. (2007). Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science, 74, 471–480.CrossRefGoogle Scholar
  18. Iriarte, J. L., González, H. E., & Nahuelhual, L. (2010). Patagonian Fjord ecosystems in southern Chile as a highly vulnerable region: Problems and needs. Ambio, 39, 463–466.CrossRefGoogle Scholar
  19. Lagus, A., Suomela, J., Weithoff, G., Heikkila, K., Helminen, H., & Sipura, J. (2004). Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. Journal of Plankton Research, 26, 779–798.CrossRefGoogle Scholar
  20. Leynaert, A., Treguer, P., Lancelot, C., & Rodier, M. (2001). Silicon limitation of biogenic silica production in the Equatorial Pacific. Deep Sea Research, 48, 639–660.CrossRefGoogle Scholar
  21. Lomas, M. W. (2004). Nitrate reductase and urease enzyme activity in the marine diatom Thalassiosira weissflogii (Bacillariophyceae): Interactions among nitrogen substrates. Marine Biology, 144, 37–44.CrossRefGoogle Scholar
  22. Lomas, M. W., & Glibert, P. M. (1999). Interactions between NH4 + and NO3 uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology, 133, 541–551.CrossRefGoogle Scholar
  23. Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1, 493–509.Google Scholar
  24. Oviatt, C., Lane, P., French, I. I. I., & Donaghay, P. (1989). Phytoplankton species and abundance in response to eutrophication in coastal marine mesocosms. Journal of Plankton Research, 11, 1223–1244.CrossRefGoogle Scholar
  25. Palma, S., & Silva, N. (2004). Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern fjords. Deep Sea Research, 51, 513–535.CrossRefGoogle Scholar
  26. Parsons, T. R., Maita, Y., & Lalli, C. (1984). A manual of chemical and biological methods for seawater analysis. New York: Pergamon Press.Google Scholar
  27. Pickard, G. L. (1970). Some physical oceanographic features of inlets of Chile. Journal of the Fisheries Research Board of Canada, 28, 1077–1106.CrossRefGoogle Scholar
  28. Piehler, M. F., Twomey, L. J., Hall, N. S., & Paerl, H. W. (2004). Impacts of inorganic nutrient enrichment on phytoplankton community structure and function in Pamlico Sound, NC, USA. Estuarine, Coastal and Shelf Science, 61, 197–209.CrossRefGoogle Scholar
  29. Pinckney, J. L., Paerl, H. W., & Harrington, M. B. (1999). Responses of the phytoplankton community growth rate to nutrient pulses in variable estuarine environments. Journal of Phycology, 35, 1455–1463.CrossRefGoogle Scholar
  30. Pizarro, G., Iriarte, J.L., Montecino, V., Blanco, J.L., & Guzman, L. (2000). Distribución de la biomasa fitoplanctónica y productividad primaria máxima de firodos y canales australes (47 - 50S) en octubre 1996. Ciencia y Tecnología del Mar, 23, 25–48.Google Scholar
  31. Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943–948.CrossRefGoogle Scholar
  32. Rebolledo, L., González, H. E., Muñoz, P., Iriarte, J. L., Lange, C. B., Pantoja, S., et al. (2011). Siliceous productivity changes in Gulf of Ancud sediments (421S, 721 W), southern Chile, over the last 150 years. Continental Shelf Research, 31, 356–365.CrossRefGoogle Scholar
  33. Reynolds, C. S. (1980). Phytoplankton assemblage and their periodicity in stratifying lake systems. Holarctic Ecology, 3, 141–159.Google Scholar
  34. Saggiomo, V., Goffart, A., Carrada, G. C., & Hecq, J. H. (1994). Spatial patterns of phytoplanktonic pigments and primary production in a semi-enclosed periantarctic ecosystem: The Strait of Magellan. Journal of Marine Systems, 5, 119–142.CrossRefGoogle Scholar
  35. Sedwick, P. N., Blain, S., Quéguiner, B., Griffiths, F. B., Fiala, M., Bucciarelli, E., et al. (2002). Resource limitation of phytoplankton growth in the Crozet Basin, Subantarctic Southern Ocean. Deep Sea Research, 49, 3327–3349.CrossRefGoogle Scholar
  36. Seguel, M., Tocornal, M.A., & Sfeir, A. (2005). Floraciones algales nocivas en los canales y fiordos del sur de Chile. Ciencia y Tecnologia del Mar, 28, 5–14.Google Scholar
  37. Shipe, R. F., Carpenter, E. J., Govil, S. R., & Capone, D. G. (2007). Limitation of phytoplankton production by Si and N in the western Atlantic Ocean. Marine Ecology Progress Series, 338, 33–45.CrossRefGoogle Scholar
  38. Silva, N. (2006). Oxígeno disuelto, pH y nutrientes en canales y fiordos australes. In N. Silva & S. Palma (Eds.), Avances en el conocimiento oceanográfico de las aguas interiores chilenas, Puerto Montt a Cabo de Hornos (pp. 37–43). Valparaíso: Comité Oceanográfico Nacional–Pontificia Universidad Católica de Valparaíso.Google Scholar
  39. Silva, N., & Neshyba, S. (1979). On the southernmost extension of the Perú–Chile undercurrent. Deep Sea Research, 26, 1387–1393.CrossRefGoogle Scholar
  40. Sommer, U. (1994). Are marine diatoms favoured by high Si:N ratios? Marine Ecology Progress Series, 115, 309–315.CrossRefGoogle Scholar
  41. Soto, D., & Norambuena, F. (2004). Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiments. Journal of Applied Ichthyology, 20, 493–501.CrossRefGoogle Scholar
  42. Steemann-Nielsen, E. (1952). The use of radiocarbon (14C) for measuring organic production in the sea. Journal Conseil Permanenr International Explore Mer, 18, 117–140.CrossRefGoogle Scholar
  43. Taylor, P. G., & Townsend, A. R. (2010). Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature, 464, 1178–1181.CrossRefGoogle Scholar
  44. Tilman, D. (1982). Resource competition and community structure. New York: Princeton University Press.Google Scholar
  45. Tilman, D., Kilham, S. S., & Kilham, P. (1982). Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics, 13, 349–372.CrossRefGoogle Scholar
  46. Tomas, C. R. (1997). Identifying marine phytoplankton. Academic Press, San Diego, CA.Google Scholar
  47. Torres, R., Frangopulos, M., Hamamé, M., Montecino, V., Maureira, C., Pizarro, G., et al. (2011). Nitrate to silicate ratio variability and the composition of micro-phytoplankton blooms in the inner-fjord of Seno Ballena (Straits of Magellan, 54°S). Continental Shelf Research, 31, 244–253.CrossRefGoogle Scholar
  48. Turner, R. E., & Rabalais, N. N. (1994). Coastal eutrophication near the Mississippi River delta. Nature, 368, 619–621.CrossRefGoogle Scholar
  49. Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved N, P, and Si in large rivers. Biogeochemistry, 64, 297–317.CrossRefGoogle Scholar
  50. Utermöhl, H. (1958). Zur Vervollkommning der quatitativen Phytoplankton-Methodik. Mitteilungen International Vereiningung fur Theor und Angewandle Limnologie, 9, 1–38.Google Scholar
  51. Valle-Levinson, A., Sarkar, N., Sanay, R., Soto, D., & León, J. (2007). Spatial structure of hydrography and flow in a Chilean Fjord, Estuario Reloncaví. Estuaries and Coasts, 30, 113–126.Google Scholar
  52. Zar, J. H. (1984). Biostatistical analysis. New York: Prentice Hall Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • José Luis Iriarte
    • 1
    • 2
  • Silvio Pantoja
    • 2
    • 3
  • Humberto E. González
    • 2
    • 4
  • Gabriela Silva
    • 1
  • Hector Paves
    • 4
  • Pamela Labbé
    • 3
  • Lorena Rebolledo
    • 4
  • Murat Van Ardelan
    • 5
  • V. Häussermann
    • 6
    • 7
  1. 1.Instituto de Acuicultura and Centro de Investigación en Ecosistemas de la Patagonia-CIEPUniversidad Austral de ChilePuerto MonttChile
  2. 2.COPAS Sur-Austral, Centro de Investigación Oceanográfica en el Pacífico Sur-orientalUniversidad de ConcepciónConcepciónChile
  3. 3.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  4. 4.Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
  5. 5.Department of ChemistryNorwegian University of Science and Technology, NTNUTrondheimNorway
  6. 6.Pontificia Universidad Católica de ValparaísoFacultad de Recursos Naturales, Escuela de Ciencias del MarValparaísoChile
  7. 7.Huinay Scientific Field StationPuerto MonttChile

Personalised recommendations