Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 4907–4918 | Cite as

Accumulation and biological effects of metals in wild rats in mining areas of Zambia

  • Shouta M. M. Nakayama
  • Yoshinori Ikenaka
  • Kyohei Hamada
  • Kaampwe Muzandu
  • Kennedy Choongo
  • John Yabe
  • Takashi Umemura
  • Mayumi Ishizuka
Article

Abstract

The lead–zinc (Pb–Zn) mine in Kabwe City and the copper–cobalt (Cu–Co) mine in the Copperbelt Province are major mining areas in Zambia. To examine the effects of metal pollution on wildlife, wild black rats (Rattus rattus and Rattus tanezumi) were captured in Kabwe and Chingola (in the Copperbelt Province), and in Lusaka (a noncontaminated site). Wild black rats in Kabwe accumulated significantly higher concentrations of Pb and Cd in various organs than rats from Lusaka. In Chingola, significantly higher concentrations of Cu, Co, Pb, and Cd were accumulated in wild black rats than in rats from Lusaka. These results were in accordance with metal accumulation patterns in soil. From toxicological aspects, concentrations of Pb and Cd in rats were generally low. However, metallothionein-1 (MT-1) and metallothionein-2 (MT-2) mRNA expression levels in wild black rats from Kabwe were significantly higher than those in rats from Lusaka. A generalized linear model (GLM) showed that concentrations of Zn and Cu had positive effects on the MT-1 and MT-2 mRNA expression. These results suggest that wild black rats in Zambian mining sites were exposed to metals that accumulated in their organs, causing biological responses such as MT mRNA induction. GLM indicated that heme oxygenase-1 (HO-1) mRNA expression could be a marker for Cr exposure.

Keywords

Metal Metallothionein Hemeoxygenase Biological responses Generalized linear model Wild rat 

Notes

Acknowledgments

This study was supported, in part, by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan awarded to M. Ishizuka (No. 24405004) and Y. Ikenaka (No. 23710038) and foundations of JSPS AA Science Platform Program, Sumitomo, Heiwa Nakajima, and Mitsui & Co., Ltd. One of the authors (S. Nakayama) is a Research Fellow of the Japan Society for the Promotion of Science (No. 2403000402). We would like to acknowledge the financial supports by The Naito Foundation and Sompo Japan Environment Foundation. We gratefully acknowledge the assistance of Dr. Nakozi Kabeta, Provincial Veterinary Officer in Kabwe.

Supplementary material

10661_2012_2912_MOESM1_ESM.docx (807 kb)
ESM 1 (DOCX 807 kb)

References

  1. Amiard, J. C., Amiard, C. T., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160–202.CrossRefGoogle Scholar
  2. Barry, P. S. I. (1975). A comparison of concentrations of lead in human tissues. British Journal of Industrial Medicine, 32, 119–139.Google Scholar
  3. Blacksmith Institute (2007). The world's worst polluted places: The top ten of the dirty thirty. 1–69.Google Scholar
  4. Ceruti, R., Ghisleni, G., Ferretti, E., Cammarata, S., Sonozogni, O., & Scanziani, E. (2002). Wild rats as monitor of environmental lead contamination in the urban area of Milan, Italy. Environmental Pollution, 117, 255–259.CrossRefGoogle Scholar
  5. Choongo, K. C., Syakalima, M. S., & Mwase, M. (2005). Coefficient of condition in relation to copper levels in muscle of Serranochromis fish and sediment from the Kafue River, Zambia. Bulletin of Environmental Contamination and Toxicology, 75, 645–651.CrossRefGoogle Scholar
  6. Cooke, J. A. (2011). Cadmium in small mammals. In Beyer & Meador (Eds.), Environmental contaminants in biota: interpreting tissue concentrations (2nd ed., pp. 627–642). New York: CRC Press.CrossRefGoogle Scholar
  7. Copperbelt Environment Project. (2006). Kabwe scoping and design study. Kitwe: Project synthesis.Google Scholar
  8. Coyle, P., Philcox, J. C., Carey, L. C., & Rofe, A. M. (2002). Metallothionein: the multipurpose protein. Cellular and Molecular Life Sciences, 59(4), 627–647.CrossRefGoogle Scholar
  9. Damek-Poprawa, M., & Sawicka-Kapusta, K. (2003). Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186, 1–10.CrossRefGoogle Scholar
  10. Haq, F., Mahoney, M., & Koropatnick, J. (2003). Review: signaling events for metallothionein induction. Mutation Research, 533, 211–226.CrossRefGoogle Scholar
  11. He, X., & Ma, Q. (2009). Induction of metallothionein I by arsenic via metal-activated transcription factor 1. The Journal of Biological Chemistry, 284(19), 12609–12621.CrossRefGoogle Scholar
  12. Hylland, K., Nissen-Lie, T., Christensen, P. G., & Sandvik, M. (1998). Natural modulation of hepatic metallothionein and cytochrome P4501A in flounder, Platichthys flesus L. Marine Environmental Research, 46(1–5), 51–55.CrossRefGoogle Scholar
  13. Ikenaka, Y., Nakayama, M. M. S., Muzandu, K., Choongo, K., Mizuno, N., & Ishizuka, M. (2010). Heavy metal contamination of soil and sediment in Zambia. African Journal of Environmental Science and Technology, 4(11), 729–739.Google Scholar
  14. Joseph, P., He, Q., & Umbright, C. (2008). Heme-oxygenase1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicological Sciences, 103(2), 325–334.CrossRefGoogle Scholar
  15. Jumba, I. O., Kisia, S. M., & Kock, R. (2007). Animal health problems attributed to environmental contamination in Lake Nakuru National Park, Kenya: A case study on heavy metal poisoning in the Waterbuck Kobus ellipsiprymnus defassa (Ruppel 1835). Archives of Environmental Contamination and Toxicology, 52, 270–281.CrossRefGoogle Scholar
  16. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., p. 413). London: CRC Press.Google Scholar
  17. Kamona, A. F., & Friedrich, G. H. (2007). Geology, mineralogy and stable isotope geochemistry of the Kabwe carbonate-hosted Pb–Zn deposit, Central Zambia. Ore Geology Review, 30, 217–243.CrossRefGoogle Scholar
  18. Leonard, S. S., Harris, G. K., & Shi, X. (2004). Metal-induced oxidative stress and signal transduction. Free Radical Biology & Medicine, 37(12), 1921–1942.CrossRefGoogle Scholar
  19. Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455–460.CrossRefGoogle Scholar
  20. Ma, W. (1989). Effect of soil pollution with metallic lead pellets on lead bioaccumulation and organ/body weight alterations in small mammals. Archives of Environmental Contamination and Toxicology, 18, 617–622.CrossRefGoogle Scholar
  21. Ma, W. C. (2011). Lead in mammals. In Beyer & Meador (Eds.), Environmental contaminants in biota: interpreting tissue concentrations (2nd ed., pp. 595–607). New York: CRC Press.CrossRefGoogle Scholar
  22. Marques, C. C., Gabriel, S. I., Pinheiro, T., Viegas-Crespo, A. M., Mathias, M. L., & Bebianno, M. J. (2008). Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: an ecophysiological approach. Chemosphere, 71, 1340–1347.CrossRefGoogle Scholar
  23. Matsumoto, K., Fujishiro, H., Satoh, M., & Himeno, S. (2010). DNA microarray analysis of the liver of mice treated with cobalt chloride. The Journal of Toxicological Sciences, 35(6), 935–939.CrossRefGoogle Scholar
  24. Mihaljevic, M., Ettler, V., Sebek, O., Sracek, O., Kribek, B., Kyncl, T., et al. (2011). Lead isotopic and metallic pollution record in tree rings from the Copperbelt mining-smelting area, Zambia. Water, Air, and Soil Pollution, 216, 657–668.CrossRefGoogle Scholar
  25. Nakayama, M. M. S., Ikenaka, Y., Hamada, K., Muzandu, K., Choongo, K., Teraoka, H., et al. (2011). Metal and metalloid contamination in roadside soil and wild rats around a Pb–Zn mine in Kabwe, Zambia. Environmental Pollution, 159, 175–181.CrossRefGoogle Scholar
  26. Nakayama, M. M. S., Ikenaka, Y., Muzandu, K., Choongo, K., Oroszlany, B., Teraoka, H., et al. (2010). Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi) and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba Zambia. Archives of Environmental Contamination and Toxicology, 59(2), 291–300.CrossRefGoogle Scholar
  27. Nriagu, J. O. (1992). Toxic metal pollution in Africa. The Science of the Total Environment, 121, 1–37.CrossRefGoogle Scholar
  28. Pereira, R., Pereira, L. M., Ribeiro, R., & Goncalves, F. (2006). Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution, 139, 561–575.CrossRefGoogle Scholar
  29. Pettersson, U. T., & Ingri, J. (2001). The geochemistry of Co and Cu in the Kafue River as it drains the Copperbelt mining area, Zambia. Chemical Geology, 177, 399–414.CrossRefGoogle Scholar
  30. Robins, J. H., Hingston, M., Matisoo-Smith, E., & Ross, H. A. (2007). Identifying Rattus species using mitochondrial DNA. Molecular Ecology Notes, 7, 717–729.CrossRefGoogle Scholar
  31. Rogival, D., Campenhout, K. V., Infante, H. G., Hearn, R., Scheirs, J., & Blust, R. (2007). Induction and metal speciation of metallothionein in wood mice (Apodemus sylvaticus) along a metal pollution gradient. Environmental Toxicology and Chemistry, 26(3), 506–514.CrossRefGoogle Scholar
  32. Sanchez-Chardi, A., Marques, C. C., Nadal, J., & Mathias, L. M. (2007). Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site. Chemosphere, 67, 121–130.CrossRefGoogle Scholar
  33. Shore, R. F., & Douben, P. E. T. (1994). The ecotoxicological significance of cadmium intake and residues in terrestrial small mammals. Ecotoxicology and Environmental Safety, 29, 101–112.CrossRefGoogle Scholar
  34. Swiergosz-Kowalewska, R., Bednarska, A., & Callaghan, A. (2007). Expression of metallothionein genes I and II in bank vole Clethrionomys glareolus populations chronically exposed in situ to heavy metals. Environmental Science and Technology, 41, 1032–1037.CrossRefGoogle Scholar
  35. Syakalima, M., Choongo, K., Chilonda, P., Ahmadu, B., Mwase, M., Onuma, M., et al. (2001). Bioaccumulation of lead in wildlife dependent on the contaminated environment of the Kafue Flats. Bulletin of Environmental Contamination and Toxicology, 67, 438–445.CrossRefGoogle Scholar
  36. Talmage, S. S., & Walton, B. T. (1991). Small mammals as monitors of environmental contaminants. Reviews of Environmental Contamination and Toxicology, 119, 47–145.CrossRefGoogle Scholar
  37. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.CrossRefGoogle Scholar
  38. Tanikawa, T. (1993). An eye-lens weight curve for determining age in black rats, Rattus rattus. Journal of the Mammalian Society of Japan, 18(1), 49–51.Google Scholar
  39. Tembo, D. B., Sichilongo, K., & Cernak, J. (2006). Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe Town in Zambia. Chemosphere, 63, 497–501.CrossRefGoogle Scholar
  40. U.S. Geological Survey (USGS) (2010) 2008 mineral yearbook AFRICA http://minerals.usgs.gov/minerals/pubs/country/2008/myb3-sum-2008-africa.pdf
  41. United States Environmental Protection Agency (2003) Guidance for developing ecological soil screening levels. OSWER-Directive 9285.7-55. http://www.epa.gov/ecotox/ecossl/.
  42. United States Environmental Protection Agency (2004) Framework for inorganic metals risk assessment.Draft EPA/630/P-04/068B, 20460. Washington DC.Google Scholar
  43. Vanparys, C., Dauwe, T., Van Campenhout, K., Bervoets, L., De, C. W., Blust, R., et al. (2008). Metallothioneins (MTs) and δ-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. The Science of the Total Environment, 401, 184–193.CrossRefGoogle Scholar
  44. Yabe, J., Ishizuka, M., & Umemura, T. (2010). Current levels of heavy pollution in Africa. The Journal of Veterinary Medical Science, 72(10), 1257–1263.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Shouta M. M. Nakayama
    • 1
  • Yoshinori Ikenaka
    • 1
  • Kyohei Hamada
    • 1
  • Kaampwe Muzandu
    • 2
  • Kennedy Choongo
    • 2
  • John Yabe
    • 3
  • Takashi Umemura
    • 3
  • Mayumi Ishizuka
    • 1
  1. 1.Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Biomedical Sciences, School of Veterinary MedicineUniversity of ZambiaLusakaZambia
  3. 3.Laboratory of Comparative Pathology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan

Personalised recommendations