Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 4721–4734 | Cite as

Measurement of biochemical oxygen demand of the leachates

Article

Abstract

Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

Keywords

Biochemical oxygen demand Biochemical reaction rate Leachate Linear regression analysis Respirometric method 

Abbreviations

a

Slope of the curve (t/BODt)1/3 versus t (in litres per milligramme)

b

Interception of the curve (t/BODt)1/3 versus t (in litres day per milligramme)

B0B5

Consumption of oxygen in the dilution water (in milligrammes per litre)

BOD5

BOD value measured after the 5-day incubation period in the dark at 20 °C (in milligrammes per litre)

BODblank

BOD value reading affected due to the drop of pressure in the dilution water bottle (in milligrammes per litre)

BODread

BOD value reading affected due to the drop of pressure in the water sample bottle (in milligrammes per litre)

BODt

BOD value at time t (in milligrammes per litre)

DO0–DO5

Consumption of oxygen in the water sample (in milligrammes per litre)

F

Dilution factor (dimensionless)

k

Biochemical reaction rate constant (in per day)

L

Oxygen equivalent of the organic biodegradable remaining (in milligrammes per litre)

L0

Oxygen equivalent of organic biodegradable remaining at time zero or ultimate BOD that is the maximum oxygen consumption possible when the biodegradable organics in the leachate have been completely degraded (in milligrammes per litre)

Lt

Oxygen equivalent of the organic biodegradable remaining at time t (in milligrammes per litre)

t

Time (in days)

Notes

Acknowledgments

The study used the financial supports from Indonesian Ministry of Public Works (IMPW). The financial supports provided by IMPW were greatly appreciated.

References

  1. Afolayan, O. S., Ogundele, F. O., & Odewumi, S. G. (2012). Hydrological implication of solid waste disposal on groundwater quality in urbanized area of Lagos State, Nigeria. International Journal of Applied Science and Technology, 2(5), 74–82.Google Scholar
  2. Chaturapruek, A., Visvanathan, C., & Ahn, K. H. (2005). Ozonation of membrane bioreactor effluent for landfill leachate treatment. Environmental Technology, 26(1), 65–73. doi:10.1080/09593332608618583.CrossRefGoogle Scholar
  3. Chen, Y. Tang, X., Zhan, L. (2009). Advances in environmental geotechnics: Proceedings of the International symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009.Google Scholar
  4. Cooney, J. J., & Wuertz, S. (1989). Toxic effects of tin compounds on microorganisms. Journal of Industrial Microbiology and Biotechnology, 4(5), 375–402. doi:10.1007/BF01569539.CrossRefGoogle Scholar
  5. Cremer, J., Melbinger, A., Frey, E. (2012). Growth dynamics and the evolution of cooperation in microbial populations. Scientific Reports 2, Article Number 281, doi:10.1038/srep00281.
  6. Elyazar, I. R. F., Hay, S. I., & Baird, J. K. (2011). Malaria distribution, prevalence, drug resistance and control in Indonesia. Advances in Parasitology, 74, 41–175. doi:10.1016/B978-0-12-385897-9.00002-1.CrossRefGoogle Scholar
  7. Enujiugha, V. N., & Nwanna, L. C. (2004). Aquatic oil pollution impact indicators. Journal of Applied Sciences and Environmental Management, 8(2), 71–75.Google Scholar
  8. Enzminger, J. D., Robertson, D., Ahlert, R. C., & Kosson, D. S. (1987). Treatment of landfill leachates. Journal of Hazardous Materials, 14(1), 83–101. doi:10.1016/0304-3894(87)87007-3.CrossRefGoogle Scholar
  9. Fava, L., Bottoni, P., Crobe, A., Caracciolo, A. B., & Funari, E. (2001). Assessment of leaching potential of aldicarb and its metabolites using laboratory studies. Pest Management Science, 57(12), 1135–1141. doi:10.1002/ps.412.CrossRefGoogle Scholar
  10. Foley, A. E., Atkinson, T. C., & Zhao, Y. (2012). Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater. Quarterly Journal of Engineering Geology & Hydrogeology, 45(1), 61–70. doi:10.1144/1470-9236/10-044.CrossRefGoogle Scholar
  11. Fulazzaky, M. A. (2011). Determining the resistance of mass transfer for adsorption of the surfactant onto granular activated carbons from hydrodynamic column. Chemical Engineering Journal, 166(3), 832–840. doi:10.1007/j.cej.2010.11.052.CrossRefGoogle Scholar
  12. Fulazzaky, M. A., & Omar, R. (2012). Removal of oil and grease contamination from stream water using the granular activated carbon block filter. Clean Technologies and Environmental Policy. doi:10.1007/s10098-012-0471-8.
  13. Fulazzaky, M. A., Sunar, N. M., Abd Latiff, A. A., & Mohd Kassim, A. H. (2009). Empirical models of bio-sand filter to calculate the design parameters. Water Science and Technology: Water Supply, 9(6), 723–734. doi:10.2166/ws2009.228.CrossRefGoogle Scholar
  14. Gallert, C., & Winter, J. (2005). Environmental biotechnology—concepts and applications: Part 1—Bacterial metabolism in wastewater treatment systems. Weinheim: Wiley-VCH Verlag GmbH & Co.Google Scholar
  15. Ghosh, R. K., & Singh, N. (2009). Leaching behaviour of azoxystrobin and metabolites in soil columns. Pest Management Science, 65(9), 1009–1014. doi:10.1002/ps.1787.CrossRefGoogle Scholar
  16. Gu, M. B., Gil, G. C., & Kim, J. H. (2002). Enhancing the sensitivity of a two-stage continuous toxicity monitoring system through the manipulation of the dilution rate. Journal of Biotechnology, 93(3), 283–288. doi:10.1016/S0168-1656(01)00410-2.CrossRefGoogle Scholar
  17. Guo, R. X., & Chen, J. Q. (2012). Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products. Chemosphere. doi:10.1016/j.chemosphere.2012.01.031.
  18. Heijnen, J. J., & van Dijken, J. P. (1992). In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering, 39(8), 833–858. doi:10.1002/bit.260420916.CrossRefGoogle Scholar
  19. Hur, J., & Cho, J. (2012). Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors, 12(1), 972–986. doi:10.3390/s120100972.CrossRefGoogle Scholar
  20. Kulandaivelu, V., & Bhat, R. (2012). Change in the physicochemical and biological quality attributes of soil following amendment with untreated coffee processing wastewater. European Journal of Soil Biology, 50, 39–43. doi:10.1016/j.ejsobi.2011.11.011.CrossRefGoogle Scholar
  21. Kurniawan, T. A., Lo, W., Chan, G., & Sillanpää, M. E. T. (2010). Biological processes for treatment of landfill leachate. Journal of Environmental Monitoring, 12(11), 2032–2047. doi:10.1039/C0EM00076K.CrossRefGoogle Scholar
  22. Lee, A. H., Nikraz, H., & Hung, Y. T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1(4), 347–350.Google Scholar
  23. Lin, C. H., Lerch, R. N., Garrett, H. E., & George, M. F. (2004). Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri. Agroforestry Systems, 63(1), 91–99. doi:10.1023/B:AGFO.0000049437.70313.ef.CrossRefGoogle Scholar
  24. Mahmud, K., Hossain, M. D., & Shams, S. (2011). Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Management. doi:10.1016/j.wasman.2011.10.026.
  25. Mangkoedihardjo, S. (2006). Revaluation of maturity and stability indices for compost. Journal of Applied Sciences and Environmental Management, 10(3), 83–85.CrossRefGoogle Scholar
  26. Ozanne, F. (1990). Les lixiviats de decharge, le point des connaissances en 1990, TSM-L’Eau, 6, 289–314.Google Scholar
  27. Podrabsky, J. E., & Somero, G. N. (2004). Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. Journal of Experimental Biology, 207(Pt 13), 2237–2254. doi:10.1242/jeb.01016.CrossRefGoogle Scholar
  28. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. doi:10.1016/j.jhazmat.2007.09.077.CrossRefGoogle Scholar
  29. Roppola, K., Kuokkanen, T., Rämö, J., Prokkola, H., & Heiska, E. (2007). Comparison study of different BOD tests in the determination of BOD7 evaluated in a model domestic sewage. Journal of Automated Methods and Management in Chemistry. doi:10.1155/2007/39761. Article ID 39761.
  30. Roques, H. (1979). Fondament Theorique du Traitement Biologique des Eaux. Paris: Technique et Documentation.Google Scholar
  31. Słomczyńska, B., & Słomczyński, T. (2004). Physico-chemical and toxicological characteristics of leachates from MSW landfills. Polish Journal of Environmental Studies, 13(6), 627–637.Google Scholar
  32. Smith, D. C., Senior, E., & Dicks, H. M. (1999). Irrigation of soil with synthetic landfill leachate—breakthrough behaviour of selected pollutants. Water, Air, and Soil Pollution, 109(1–4), 327–342. doi:10.1023/A:1005085414309.CrossRefGoogle Scholar
  33. Srinivas, T. (2008). Environmental Biotechnology. New Delhi: New Age International Pvt. Ltd., Publishers.Google Scholar
  34. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V. (2006). Landfill leachate treatment methods: a review. Environmental Chemistry Letters, 4(1), 51–61. doi:10.1007/s10311-005-0016-z.CrossRefGoogle Scholar
  35. Xiao, Y., Bai, X., Ouyang, Z., Zheng, H., & Xing, F. (2007). The composition, trend and impact of urban solid waste in Beijing. Environmental Monitoring and Assessment, 135(1–3), 21–30. doi:10.1007/s10661-007-9708-0.CrossRefGoogle Scholar
  36. Zeeb, M., & Sadeghi, M. (2012). Sensitive determination of terazosin in pharmaceutical formulations and biological samples by ionic-liquid microextraction prior to spectrofluorimetry. International Journal of Analytical Chemistry. doi:10.1155/2012/546282.

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Environmental and Water Resources Management, Water Research AllianceUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Laboratoire des Sciences de l’EnvironnementEcole Nationale des Travaux Pulics de l’EtatVaulx-en-VelinFrance

Personalised recommendations