Environmental Monitoring and Assessment

, Volume 185, Issue 6, pp 4513–4527 | Cite as

A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment

  • Xiaoming Zou
  • Xianghong Zhou
  • Zhifen Lin
  • Ziqing Deng
  • Daqiang Yin


As organisms are typically exposed to chemical mixtures over long periods of time, chronic mixture toxicity is the best way to perform an environmental risk assessment (ERA). However, it is difficult to obtain the chronic mixture toxicity data due to the high expense and the complexity of the data acquisition method. Therefore, an approach was proposed in this study to predict chronic mixture toxicity. The acute (15 min exposure) and chronic (24 h exposure) toxicity of eight antibiotics and trimethoprim to Vibrio fischeri were determined in both single and binary mixtures. The results indicated that the risk quotients (RQs) of antibiotics should be based on the chronic mixture toxicity. To predict the chronic mixture toxicity, a docking-based receptor library of antibiotics and the receptor-library-based quantitative structure–activity relationship (QSAR) model were developed. Application of the developed QSAR model to the ERA of antibiotic mixtures demonstrated that there was a close affinity between RQs based on the observed chronic toxicity and the corresponding RQs based on the predicted data. The average coefficients of variations were 46.26 and 34.93 % and the determination coefficients (R2) were 0.999 and 0.998 for the low concentration group and the high concentration group, respectively. This result convinced us that the receptor library would be a promising tool for predicting the chronic mixture toxicity of antibiotics and that it can be further applied in ERA.


Chronic mixture toxicity Predicting Molecular docking QSAR 



Environment risk assessment


Measured environment concentration


Risk quotient


Quantitative structure–activity relationship


United States Environmental Protection Agency






Toxicity unit



Supplementary material

10661_2012_2885_MOESM1_ESM.doc (919 kb)
ESM 1Supplementary material. (DOC 919 kb)


  1. Achari, A. (1997). Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Structural & Molecular Biology, 4(6), 490–497.CrossRefGoogle Scholar
  2. Ahlers, J., Riedhammer, C., Vogliano, M., Ebert, R., Kühne, R., & Schüürmann, G. (2006). Acute to chronic ratios in aquatic toxicity-variation across trophic levels and relationship with chemical structure. Environmental Toxicology and Chemistry, 25(11), 2937–2945.CrossRefGoogle Scholar
  3. Altenburger, R., Nendza, M., & Schüürmann, G. (2003). Mixture toxicity and its modeling by quantitative structure/activity relationships. Environmental Toxicology and Chemistry, 22(8), 1900–1915.CrossRefGoogle Scholar
  4. Appling, D. R. (1991). Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. The FASEB Journal, 5(12), 2645–2651.Google Scholar
  5. Artsimovitch, I., Vassylyeva, M. N., Svetlov, D., Svetlov, V., Perederina, A., Igarashi, N., et al. (2005). Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell, 122(3), 351–363.CrossRefGoogle Scholar
  6. Atkinson, A. C. (1985). Plots, transformations, and regression. Oxford: Oxford University Press.Google Scholar
  7. Backhaus, T., Froehner, K., Altenburger, R., & Grimme, L. (1997). Toxicity testing with Vibrio fischeri: a comparison between the long term (24 h) and the short term (30 min) bioassay. Chemosphere, 35(12), 2925–2938.CrossRefGoogle Scholar
  8. Backhaus, T., Scholze, M., & Grimme, L. H. (2000). The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquatic Toxicology, 49(1–2), 49–61.CrossRefGoogle Scholar
  9. Bairoch, A., Apweiler, R., Wu, C., Barker, W., Boeckmann, B., Ferro, S., et al. (2005). The universal protein resource (UniProt). Nucleic Acids Research, 33(Database Issue), D154–D159.CrossRefGoogle Scholar
  10. Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., et al. (2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 58(6), 899–907.CrossRefGoogle Scholar
  11. Blaschke, U., Paschke, A., Rensch, I., & Schüürmann, G. (2010). Acute and chronic toxicity toward the bacteria Vibrio fischeri of organic narcotics and epoxides: structural alerts for epoxide excess toxicity. Chemical Research In Toxicology, 23(12), 1936–1946.CrossRefGoogle Scholar
  12. Brock, T., Arts, G. H. P., Maltby, L., & Van den Brink, P. J. (2006). Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation. Integrated Environmental Assessment and Management, 2(4), e20–e46.CrossRefGoogle Scholar
  13. Broderius, S., Kahl, M., & Hoglund, M. (1995). Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environmental Toxicology and Chemistry, 14(9), 1591–1605.CrossRefGoogle Scholar
  14. Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103(7), 1143–1154.CrossRefGoogle Scholar
  15. Bushby, S., & Hitchings, G. (1968). Trimethoprim, a sulphonamide potentiator. British journal of pharmacology and chemotherapy, 33(1), 72–90.CrossRefGoogle Scholar
  16. Cassee, F. R., Groten, J. P., Bladeren, P. J., & Feron, V. J. (1998). Toxicological evaluation and risk assessment of chemical mixtures. CRC Critical Reviews in Toxicology, 28(1), 73–101.CrossRefGoogle Scholar
  17. Chapman, P. M., Fairbrother, A., & Brown, D. (1998). A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry, 17(1), 99–108.CrossRefGoogle Scholar
  18. Chen, W. R., & Huang, C. H. (2010). Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 79(8), 779–785.CrossRefGoogle Scholar
  19. Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59(3), 309–315.CrossRefGoogle Scholar
  20. Cronin, M. T. D., & Dearden, J. C. (1995). QSAR in toxicology. 3. Prediction of chronic toxicities. Quantitative Structure–Activity Relationships, 14(4), 329–334.CrossRefGoogle Scholar
  21. Cronin, M. T. D., & Schultz, T. W. (1997). Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols. Science of the Total Environment, 204(1), 75–88.CrossRefGoogle Scholar
  22. Cunningham, V. (2004). Special characteristics of pharmaceuticals related to environmental fate. Pharmaceuticals in the Environment, 2, 13–24.CrossRefGoogle Scholar
  23. Dahlberg, A. E. (1989). The functional role of ribosomal RNA in protein synthesis. Cell, 57(4), 525–529.CrossRefGoogle Scholar
  24. De Liguoro, M., Fioretto, B., Poltronieri, C., & Gallina, G. (2009). The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere, 75(11), 1519–1524.CrossRefGoogle Scholar
  25. De Zwart, D., & Slooff, W. (1983). The Microtox as an alternative assay in the acute toxicity assessment of water pollutants. Aquatic Toxicology, 4(2), 129–138.CrossRefGoogle Scholar
  26. Dom, N., Penninck, M., Knapen, D., & Blust, R. (2012). Discrepancies in the acute versus chronic toxicity of compounds with a designated narcotic mechanism. Chemosphere, 87(7), 742–749.CrossRefGoogle Scholar
  27. Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61(3), 377–392.Google Scholar
  28. Dunkle, J. A., Xiong, L., Mankin, A. S., & Cate, J. H. D. (2010). Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proceedings of the National Academy of Sciences, 107(40), 17152–17157.CrossRefGoogle Scholar
  29. Edwards, M. J., Flatman, R. H., Mitchenall, L. A., Stevenson, C. E. M., Le, T. B. K., Clarke, T. A., et al. (2009). A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase. Science, 326(5958), 1415–1418.CrossRefGoogle Scholar
  30. Eguchi, K., Nagase, H., Ozawa, M., Endoh, Y. S., Goto, K., Hirata, K., et al. (2004). Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere, 57(11), 1733–1738.CrossRefGoogle Scholar
  31. Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives, 111(10), 1361–1375.CrossRefGoogle Scholar
  32. Escher, B. I., & Hermens, J. L. M. (2002). Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environmental Science & Technology, 36(20), 4201–4217.Google Scholar
  33. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., et al. (2003). Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicology, 63(1), 43–63.CrossRefGoogle Scholar
  34. Finney, D. (1971). Probit analysis (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  35. Fratev, F., Piparo, E. L., Benfenati, E., & Mihaylova, E. (2007). Toxicity study of allelochemical-like pesticides by a combination of 3D-QSAR, docking, local binding energy (LBE) and GRID approaches. SAR and QSAR in Environmental Research, 18(7–8), 675–692.CrossRefGoogle Scholar
  36. Garcia-Galan, M. J., Garrido, T., Fraile, J., Ginebreda, A., Diaz-Cruz, M. S., & Barcelo, D. (2010). Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain). Journal of Hydrology, 383(1–2), 93–101.CrossRefGoogle Scholar
  37. Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.CrossRefGoogle Scholar
  38. Golbraikh, A., & Tropsha, A. (2002). Beware of q 2! Journal of Molecular Graphics and Modelling, 20(4), 269–276.CrossRefGoogle Scholar
  39. Gschwend, D. A., Good, A. C., & Kuntz, I. D. (1996). Molecular docking towards drug discovery. Journal of Molecular Recognition, 9(2), 175–186.CrossRefGoogle Scholar
  40. Henry, R. (1943). The mode of action of sulfonamides. Microbiology and Molecular Biology Reviews, 7(4), 175–262.Google Scholar
  41. Hertzberg, R. C., & Teuschler, L. K. (2002). Evaluating quantitative formulas for dose–response assessment of chemical mixtures. Environmental Health Perspectives, 110(Suppl 6), 965–970.CrossRefGoogle Scholar
  42. Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. (1999). Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment, 225(1–2), 109–118.CrossRefGoogle Scholar
  43. Hladky, S., & Haydon, D. (1972). Ion transfer across lipid membranes in the presence of gramicidin A: I. Studies of the unit conductance channel. Biochimica et Biophysica Acta (BBA)—Biomembranes, 274(2), 294–312.CrossRefGoogle Scholar
  44. Ishino, F., Mitsui, K., Tamaki, S., & Matsuhashi, M. (1980). Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin-sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochemical and Biophysical Research Communications, 97(1), 287–293.CrossRefGoogle Scholar
  45. Jiang, L., Hu, X., Yin, D., Zhang, H., & Yu, Z. (2010). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82(6), 822–828.CrossRefGoogle Scholar
  46. Jiang, L., Lin, Z., Hu, X., & Yin, D. (2010). Toxicity prediction of antibiotics on luminescent bacteria, Photobacterium phosphoreum, based on their quantitative structure activity relationship models. Bulletin Of Environmental Contamination and Toxicology, 85(6), 550–555.CrossRefGoogle Scholar
  47. Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75(4), 417–434.CrossRefGoogle Scholar
  48. Kaiser, J. (2003). Hormesis: sipping from a poisoned chalice. Science, 302(5644), 376–379.CrossRefGoogle Scholar
  49. Kim, Y., Choi, K., Jung, J., Park, S., Kim, P. G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370–375.CrossRefGoogle Scholar
  50. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.CrossRefGoogle Scholar
  51. Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobial Chemotherapy, 52(1), 5–7.CrossRefGoogle Scholar
  52. Kummerer, K. (2009a). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75(4), 417–434.CrossRefGoogle Scholar
  53. Kummerer, K. (2009b). Antibiotics in the aquatic environment—a review—part II. Chemosphere, 75(4), 435–441.CrossRefGoogle Scholar
  54. Lambert, M. P., & Neuhaus, F. C. (1972). Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. Journal of Bacteriology, 110(3), 978–987.Google Scholar
  55. Li, F., Xie, Q., Li, X., Li, N., Chi, P., Chen, J., et al. (2010). Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: in vitro and in silico investigations. Environmental Health Perspectives, 118(5), 602–606.CrossRefGoogle Scholar
  56. Lin, Z., Shi, P., Gao, S., Wang, L., & Yu, H. (2003). Use of partition coefficients to predict mixture toxicity. Water Research, 37(9), 2223–2227.CrossRefGoogle Scholar
  57. Lindsey, M. E., Meyer, M., & Thurman, E. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73(19), 4640–4646.CrossRefGoogle Scholar
  58. Lovell, S. C., Davis, I. W., Arendall, W. B., III, de Bakker, P. I. W., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by C geometry, and C deviation. Proteins: Structure, Function, and Genetics, 50(3), 437–450.CrossRefGoogle Scholar
  59. McCarty, L., Hodson, P., Craig, G., & Kaiser, K. (1985). The use of quantitative structure–activity relationships to predict the acute and chronic toxicities of organic chemicals to fish. Environmental Toxicology and Chemistry, 4(5), 595–606.CrossRefGoogle Scholar
  60. McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., et al. (1997). Quantitative structure–activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40(9), 1340–1346.CrossRefGoogle Scholar
  61. Mekenyan, O., & Veith, G. (1993). Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. SAR and QSAR in Environmental Research, 1(4), 335–344.CrossRefGoogle Scholar
  62. Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13(4), 505–524.CrossRefGoogle Scholar
  63. Mizutani, M. Y., & Itai, A. (2004). Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. Journal of Medicinal Chemistry, 47(20), 4818–4828.CrossRefGoogle Scholar
  64. Muegge, I. (2001). Effect of ligand volume correction on PMF scoring. Journal of Computational Chemistry, 22(4), 418–425.Google Scholar
  65. O'Brien, E., & Dietrich, D. (2004). Hindsight rather than foresight: reality versus the EU draft guideline on pharmaceuticals in the environment. Trends in Biotechnology, 22(7), 326–330.CrossRefGoogle Scholar
  66. Oefner, C., Bandera, M., Haldimann, A., Laue, H., Schulz, H., Mukhija, S., et al. (2009). Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity. Journal of Antimicrobial Chemotherapy, 63(4), 687–698.CrossRefGoogle Scholar
  67. Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32(2), 265–268.CrossRefGoogle Scholar
  68. Peijnenburg, W. (1994). Structure–activity relationships for biodegradation: a critical review. Pure and Applied Chemistry, 66, 1931–1941.CrossRefGoogle Scholar
  69. Pence, H. E., & Williams, A. (2010). ChemSpider: an online chemical information resource. Journal of Chemical Education, 87(11), 1123–1124.Google Scholar
  70. Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pK a) for human and veterinary antibiotics. Water Research, 38(12), 2874–2890.CrossRefGoogle Scholar
  71. Rabinowitz, J. R., Goldsmith, M. R., Little, S. B., & Pasquinelli, M. A. (2008). Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environmental Health Perspectives, 116(5), 573–577.Google Scholar
  72. Raimondo, S., Montague, B. J., & Barron, M. G. (2007). Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish. Environmental Toxicology and Chemistry, 26(9), 2019–2023.CrossRefGoogle Scholar
  73. Reece, R. J., Maxwell, A., & Wang, J. C. (1991). DNA gyrase: structure and function. Critical Reviews in Biochemistry and Molecular Biology, 26(3–4), 335–375.CrossRefGoogle Scholar
  74. Romero-Gonzalez, R., López-Martínez, J., Gomez-Milan, E., Garrido-Frenich, A., & Martinez-Vidal, J. (2007). Simultaneous determination of selected veterinary antibiotics in gilthead seabream (Sparus aurata) by liquid chromatography–mass spectrometry. Journal of Chromatography B, 857(1), 142–148.CrossRefGoogle Scholar
  75. Sainsbury, S., Bird, L., Rao, V., Shepherd, S. M., Stuart, D. I., Hunter, W. N., et al. (2010). Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. Journal of Molecular Biology, 405(1), 173–184.CrossRefGoogle Scholar
  76. Spassov, V., Flook, P., & Yan, L. (2008). LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Engineering, Design and Selection, 21(2), 91–100.CrossRefGoogle Scholar
  77. Sung, M. T., Lai, Y. T., Huang, C. Y., Chou, L. Y., Shih, H. W., Cheng, W. C., et al. (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proceedings of the National Academy of Sciences, 106(22), 8824–8829.CrossRefGoogle Scholar
  78. Tong, W., Hong, H., Xie, Q., Shi, L., Fang, H., & Perkins, R. (2005). Assessing QSAR limitations—a regulatory perspective. Current Computer-Aided Drug Design, 1(2), 195–205.CrossRefGoogle Scholar
  79. U.S. EPA (1991). Technical support document for water quality-based toxics control. In EPA/505/2-90-001 (Ed.). Washington, DC.Google Scholar
  80. U.S. EPA (2000). Supplementary guidance for conducting health risk assessment of chemical mixtures. In E. 630/R-00/002 (Ed.). Washington, DC.Google Scholar
  81. Umetrics, A. (2002). User’s guide to SIMCA-P. SIMCA-P+, Version, 10.Google Scholar
  82. Wang, B., Yu, G., Zhang, Z., Hu, H., & Wang, L. (2006). Quantitative structure–activity relationship and prediction of mixture toxicity of alkanols. Chinese Science Bulletin, 51(22), 2717–2723.CrossRefGoogle Scholar
  83. Wang, Y., Chen, J., Li, F., Qin, H., Qiao, X., & Hao, C. (2009). Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere, 76(7), 999–1005.CrossRefGoogle Scholar
  84. Waxman, D. J., & Strominger, J. L. (1983). Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics1. Annual Review of Biochemistry, 52(1), 825–869.CrossRefGoogle Scholar
  85. Wu, D., Hu, T., Zhang, L., Chen, J., Du, J., Ding, J., et al. (2008). Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: enzymatic characterization with crystal structure analysis. Protein Science, 17(6), 1066–1076.CrossRefGoogle Scholar
  86. Xu, S., & Nirmalakhandan, N. (1998). Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Research, 32(8), 2391–2399.CrossRefGoogle Scholar
  87. Yang, R., Thomas, R., Gustafson, D., Campain, J., Benjamin, S., Verhaar, H., et al. (1998). Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling. Environmental Health Perspectives, 106(Suppl 6), 1385–1393.CrossRefGoogle Scholar
  88. Zhang, H. C., Hu, X. L., Yin, D. Q., & Lin, Z. F. (2010). Development of molecular docking-based binding energy to predict the joint effect of BPA and its analogs. Human & Experimental Toxicology, 30(4), 4318–4327.Google Scholar
  89. Zou, X., Lin, Z., Deng, Z., Yin, D., & Zhang, Y. (2012). The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 86(1), 30–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Xiaoming Zou
    • 1
    • 4
  • Xianghong Zhou
    • 3
  • Zhifen Lin
    • 1
  • Ziqing Deng
    • 1
  • Daqiang Yin
    • 1
    • 2
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  3. 3.Department of Public ManagementTongji UniversityShanghaiChina
  4. 4.College of Life ScienceJinggangshan UniversityJi’anChina

Personalised recommendations