Environmental Monitoring and Assessment

, Volume 185, Issue 5, pp 3879–3895 | Cite as

Metal contamination in water, sediment and biota from a semi-enclosed coastal area

Article

Abstract

This study identifies and quantifies the spatial variations of metal contamination in water, sediment and biota: the common cockle (Cerastoderma edule) and the Mermaid’s glove sponge (Haliclona oculata), within a heavily anthropogenically impacted semi-enclosed estuarine–coastal area with a low ability to disperse and flush contaminants (Poole Harbour, UK). The results showed that metal contamination was detected in all environmental compartments. Water was polluted with As, and Hg sediment metals were mostly within “the possible effect range” in which adverse effects occasionally occurs. Cockles had considerable concentrations of Ni, Ag and Hg in areas close to pollution sources, and sponges accumulate Cu and Zn with very high magnitude. A systematic monitoring approach that includes biological monitoring techniques, which covers all embayments, is needed, and an integrated management of the semi-enclosed coastal zones should be based on the overall hydrological characteristics of these sensitive areas and their ability to self‐restore which is different than open coastal zones.

Keywords

Semi-enclosed coastal zone Metal contamination Poole Harbour Metal accumulation Pollution 

Notes

Acknowledgments

This work was funded by the Ministry of Higher Education of Egypt (National Institute of Oceanography and Fisheries) in the framework of overseas PhD missions. We are indebted to Professor John Humphreys and Mr. Matthew Harris (Institute of Marine Sciences, University of Portsmouth) for their help in field work. Thanks are due to Dr. Antony Jensen (National Oceanography Centre, University of Southampton) for his support.

References

  1. Ackers, R., Moss, D., & Picton, B. (2007). Sponges of the British Isles (Sponge V) (p. 161). UK: Marine Conservation Society.Google Scholar
  2. Alpar, B., Burak, S., & Dogan, E. (2005). Environmental and hydrological management of the Golden Horn Estuary, Istanbul. Journal of Coastal Research, 21(4), 646–654. doi: 10.2112/04-0154.1.CrossRefGoogle Scholar
  3. Amiard, J. C., Journel, R., & Bacheley, H. (2008). Influence of field and experimental exposure of mussels (Mytilus sp.) to nickel and vanadium on metallothionein concentration. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 147(3), 378–385. doi: 10.1016/j.cbpc.2008.01.006.CrossRefGoogle Scholar
  4. Astley, K. N., Meigh, H. C., Glegg, G. A., Braven, J., & Depledge, M. H. (1999). Multi-variate analysis of biomarker responses in Mytilus edulis and Carcinus maenas from the Tees Estuary (UK). Marine Pollution Bulletin, 39(1–12), 145–154.CrossRefGoogle Scholar
  5. Baudrimont, M., Lemaire-Gony, S., Ribeyre, F., Metivaud, J., & Boudou, A. (1997). Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 118(3), 361–367.CrossRefGoogle Scholar
  6. Baudrimont, M., Schafer, J., Marie, V., Maury-Brachet, R., Bossy, C., Boudou, A., et al. (2005). Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France). Science of the Total Environment, 337(1–3), 265–280. doi: 10.1016/j.scitotenv.2004.07.009.CrossRefGoogle Scholar
  7. Berthet, B., Mouneyrac, C., Perez, T., & Amiard-Triquet, C. (2005). Metallothionein concentration in sponges (Spongia officinalis) as a biomarker of metal contamination. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 141(3), 306–313. doi: 10.1016/j.cca.2005.07.008.CrossRefGoogle Scholar
  8. Blinda, M., Sabhi, Y., El Quessar, S., Fekhaoui, M., & Brahim, L. A. (2005). Dynamics of heavy-metal transfer between biotic (Cytheria chione and Cerastoderma edule) and abiotic (water and sediment) components in marine environment (Bay of Martil, Moroccan Mediterranean coast). Chemistry and Ecology, 21(4), 279–301. doi: 10.1080/02757540500211244.CrossRefGoogle Scholar
  9. Boyden, C. R. (1975). Distribution of some trace metals in Poole Harbour, Dorset. Marine Pollution Bulletin, 6(12), 180–187. doi: 10.1016/0025-326x(75)90054-5.CrossRefGoogle Scholar
  10. Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy-metals in sediments with special reference to United-Kingdom estuaries—A review. Environmental Pollution, 76(2), 89–131.CrossRefGoogle Scholar
  11. Caldow, R., McGrorty, S., West, A., dit Dwell, S., Stillman, R., & Anderson, S. (2005). Macro-invertebrate fauna in the intertidal mudflats. In: The ecology of Poole Harbour (pp. 91). Amsterdam, The Netherlands: Elsevier.Google Scholar
  12. Cebrian, E., Marti, R., Uriz, J. M., & Turon, X. (2003). Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: Metal accumulation and biological responses. Marine Pollution Bulletin, 46(10), 1273–1284. doi: 10.1016/S0025-326x(03)00190-5.CrossRefGoogle Scholar
  13. Cobelo-Garcia, A., & Prego, R. (2004). Influence of point sources on trace metal contamination and distribution in a semi-enclosed industrial embayment: The Ferrol Ria (NW Spain). Estuarine Coastal and Shelf Science, 60(4), 695–703. doi: 10.1016/j.ecss.2004.03.008.CrossRefGoogle Scholar
  14. Dassenakis, M. I., Kloukiniotou, M. A., & Pavlidou, A. S. (1996). The influence of long existing pollution on trace metal levels in a small tidal Mediterranean bay. Marine Pollution Bulletin, 32(3), 275–282.CrossRefGoogle Scholar
  15. Dassenakis, M., Andrianos, H., Depiazi, G., Konstantas, A., Karabela, M., Sakellari, A., et al. (2003). The use of various methods for the study of metal pollution in marine sediments, the case of Euvoikos Gulf, Greece. Applied Geochemistry, 18(6), 781–794.CrossRefGoogle Scholar
  16. Davis, A., DeCurnou, P., & Eary, L. E. (1997). Discriminating between sources of arsenic in the sediments of a tidal waterway, Tacoma, Washington. Environmental Science & Technology, 31(7), 1985–1991.CrossRefGoogle Scholar
  17. de los Ríos, A., Juanes, J. A., Ortiz-Zarragoitia, M., López de Alda, M., Barceló, D., & Cajaraville, M. P. (2012). Assessment of the effects of a marine urban outfall discharge on caged mussels using chemical and biomarker analysis. Marine Pollution Bulletin, 64(3), 563–573. doi: 10.1016/j.marpolbul.2011.12.018.CrossRefGoogle Scholar
  18. Drake, W., & Bennett, L. (2011). Poole Harbour, Aquatic Management Plan 2006. Incorporating the European marine site management scheme (p. 84). Poole: Poole Harbour Steering Group.Google Scholar
  19. Dunning, M. (2008). Dorset industrial estate under spotlight in pollution crackdown. http://www.environment-agency.gov.uk/news/99533.aspx. Accessed 15/12/2011 2011.
  20. Dyrynda, P. (2005). Sub-tidal ecology of Poole Harbour—An overview. In: Ecology of Poole Harbour (vol. 7, pp. 109–130, Proceedings in Marine Science). Amsterdam, The Netherlands: Elsevier.Google Scholar
  21. Engel, D. W., & Brouwer, M. (1993). Crustaceans as models for metal metabolism. 1. Effects of the molt cycle on blue-crab metal metabolism and metallothionein. Marine Environmental Research, 35(1–2), 1–5.CrossRefGoogle Scholar
  22. European Commission. (2008). Directive 2008/105/EC of the European Parliament and the Council of 16 December 2008 on environmental quality standards in the field of water policy. Official Journal of the European Commission L, 348, 84.Google Scholar
  23. Food Authority: Borough of Poole (2012). Shellfish classification—Poole Harbour and Poole Bay http://www.poole.gov.uk/environment/environmental-health/shellfish-classification/#Current. Accessed 11 January 2012.
  24. Francesconi, K. A., & Lenanton, R. C. J. (1992). Mercury contamination in a semi-enclosed marine embayment: Organic and inorganic mercury content of biota, and factors influencing mercury levels in fish. Marine Environmental Research, 33(3), 189–212. doi: 10.1016/0141-1136(92)90148-f.CrossRefGoogle Scholar
  25. Galloway, T. S., Brown, R. J., Browne, M. A., Dissanayake, A., Lowe, D., Jones, M. B., et al. (2004). A multibiomarker approach to environmental assessment. Environmental Science & Technology, 38(6), 1723–1731. doi: 10.1021/Es030570+.CrossRefGoogle Scholar
  26. Geffard, A., Amiard, J., & Amiard-Triquet, C. (2002). Use of metallothionein in gills from oysters (Crassostrea gigas) as a biomarker: Seasonal and intersite fluctuations. Biomarkers, 7(2), 123–137.CrossRefGoogle Scholar
  27. Geffard, A., Smith, B. D., Amiard-Triquet, C., Jeantet, A. Y., & Rainbow, P. S. (2005). Kinetics of trace metal accumulation and excretion in the polychaete Nereis diversicolor. Marine Biology, 147(6), 1291–1304. doi: 10.1007/s00227-005-0044-z.CrossRefGoogle Scholar
  28. Gomes, T. C. M., Serafim, M. A., Company, R. S., & Bebianno, M. J. Bioaccumulation of metals in the genus Cinachyra (Porifera) from the mid-Atlantic ridge. In 9th International Symposium on Metal Ions in Biology and Medicine, 2006 (vol. 9, pp. 175–180)Google Scholar
  29. Gonzalez-Fernandez, D., Garrido-Perez, M. C., Nebot-Sanz, E., & Sales-Marquez, D. (2010). Fecal pollution in coastal marine sediments from a semi-enclosed deep embayment subjected to anthropogenic activities: An issue to be considered in environmental quality management frameworks development. Ecohealth, 7(4), 473–484. doi: 10.1007/s10393-010-0671-9.CrossRefGoogle Scholar
  30. Hansen, I. V., Weeks, J. M., & Depledge, M. H. (1995). Accumulation of copper, zinc, cadmium and chromium by the marine sponge Halichondria-panicea Pallas and the implications for biomonitoring. Marine Pollution Bulletin, 31(1–3), 133–138.CrossRefGoogle Scholar
  31. HELCOM (2007). Heavy metal pollution to the Baltic Sea in 2004. Baltic Sea Environment Proceedings (vol. 108, pp. 33). Baltic Marine Environment Protection Commission—Helsinki Commission.Google Scholar
  32. Hubner, R. (2009). Sediment geochemistry—A case study approach. Bournemouth University, Bournemouth, UK.Google Scholar
  33. Hubner, R., Astin, K. B., & Herbert, R. J. H. (2009). Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. Journal of Environmental Monitoring, 11(4), 713–722. doi: 10.1039/B818593j.CrossRefGoogle Scholar
  34. Hubner, R., Herbert, R. J. H., & Astin, K. B. (2010). Cadmium release caused by the die-back of the saltmarsh cord grass Spartina anglica in Poole Harbour (UK). Estuarine Coastal and Shelf Science, 87(4), 553–560. doi: 10.1016/j.ecss.2010.02.010.CrossRefGoogle Scholar
  35. Humphreys, J., & May, V. (2005). The ecology of Poole Harbour (Introduction: Poole Harbour in context, pp. 1–7). Amsterdam: Elsevier.CrossRefGoogle Scholar
  36. Jung, K., Stelzenmüller, V., & Zauke, G. (2006). Spatial distribution of heavy metal concentrations and biomass indices in Cerastoderma edule Linnaeus (1758) from the German Wadden Sea: An integrated biomonitoring approach. Journal of Experimental Marine Biology and Ecology, 338(1), 81–95.CrossRefGoogle Scholar
  37. Kaufmann, L., & Rousseeuw, P. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley Interscience Publication.CrossRefGoogle Scholar
  38. Kwon, Y. T., & Lee, C. W. (2001). Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation. Microchemical Journal, 70(3), 255–264.CrossRefGoogle Scholar
  39. Langston, W. J., Burt, G. R., & Zhou, M. J. (1987). Tin and organotin in water, sediments, and benthic organisms of Poole Harbor. Marine Pollution Bulletin, 18(12), 634–639.CrossRefGoogle Scholar
  40. Langston, W. J., Chesman, B. S., Burt, G. R., Hawkins, S. J., Readman, J., & Worsfold, P. (2003). Site characterization of the South West European marine sites—Poole Harbour SPA. Plymouth Marine Science Partnership on behalf of the Environment Agency and English Nature.Google Scholar
  41. Legras, S., Mouneyrac, C., Amiard, J. C., Amiard-Triquet, C., & Rainbow, P. S. (2000). Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary. Journal of Experimental Marine Biology and Ecology, 246(2), 259–279.CrossRefGoogle Scholar
  42. Leon, L. M., & Warnken, J. (2008). Copper and sewage inputs from recreational vessels at popular anchor sites in a semi-enclosed Bay (Qld, Australia): Estimates of potential annual loads. Marine Pollution Bulletin, 57(6–12), 838–845. doi: 10.1016/j.marpolbul.2008.04.033.CrossRefGoogle Scholar
  43. Mason, A., & Jenkins, K. (1995). Metal detoxification in aquatic organisms. In A. Tessier, & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (vol. 3, pp. 479–608). Chichester: Wiley.Google Scholar
  44. Omae, M. (2003). General aspects of tin-free antifouling paints. Chemical Reviews, 103(9), 3431–3448. doi: 10.1021/Cr030669z.CrossRefGoogle Scholar
  45. Owen, R., & Sandhu, N. (2000). Heavy metal accumulation and anthropogenic impacts on Tolo Harbour, Hong Kong. Marine Pollution Bulletin, 40(2), 174–180.Google Scholar
  46. Pedersen, S. N., Lundebye, A. K., & Depledge, M. H. (1997). Field application of metallothionein and stress protein biomarkers in the shore crab (Carcinus maenas) exposed to trace metals. Aquatic Toxicology, 37(2–3), 183–200.CrossRefGoogle Scholar
  47. Perez, T., Wafo, E., Fourt, M., & Vacelet, J. (2003). Marine sponges as biomonitor of polychlorohiphenyl contamination: Concentration and fate of 24 congeners. Environmental Science & Technology, 37(10), 2152–2158. doi: 10.1021/Es026234v.CrossRefGoogle Scholar
  48. Philp, R. B. (1999). Cadmium content of the marine sponge Microciona prolifera, other sponges, water and sediment from the eastern Florida panhandle: Possible effects on Microciona cell aggregation and potential roles of low pH and low salinity. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 124(1), 41–49.CrossRefGoogle Scholar
  49. Philp, R. B., Leung, F. Y., & Bradley, C. (2003). A comparison of the metal content of some benthic species from coastal waters of the Florida panhandle using high-resolution inductively coupled plasma mass spectrometry (ICP-MS) analysis. Archives of Environmental Contamination and Toxicology, 44(2), 218–223.CrossRefGoogle Scholar
  50. Pratt, C., Warnken, J., Leeming, R., Arthur, J. M., & Grice, D. I. (2007). Detection of intermittent sewage pollution in a subtropical, oligotrophic, semi-enclosed embayment system using sterol signatures in sediments. Environmental Science & Technology, 41(3), 792–802. doi: 10.1021/es061450f.CrossRefGoogle Scholar
  51. Preston, A., Jeffries, D. F., Dutton, J. W. R., Harvey, B. R., & Steele, A. K. (1972). British isles coastal waters: The concentrations of selected heavy metals in sea water, suspended matter and biological indicators—A pilot survey. Environmental Pollution, 3(1), 69–82. doi: 10.1016/0013-9327(72)90018-3.CrossRefGoogle Scholar
  52. Rousse, N., Boulegue, J., Cosson, R. P., & Fiala-Medioni, A. (1998). Bioaccumulation of metals within the hydrothermal mytilidae Bathymodiolus sp. from the Mid-Atlantic Ridge. Oceanologica Acta, 21(4), 597–607.CrossRefGoogle Scholar
  53. Saavedra, Y., Gonzalez, A., Fernandez, P., & Blanco, J. (2004). Interspecific variation of metal concentrations in three bivalve mollusks from Galicia. Archives of Environmental Contamination and Toxicology, 47(3), 341–351. doi: 10.1007/s00244-004-3021-5.CrossRefGoogle Scholar
  54. Schroeder, H., Shostak, K., Gamulin, V., Lacorn, M., Skorokhod, A., Kavsan, V., et al. (2000). Purification, cDNA cloning and expression of a cadmium-inducible cysteine-rich metallothionein-like protein from the marine sponge Suberites domuncula. Marine Ecology Progress Series, 200, 149–157.CrossRefGoogle Scholar
  55. Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759. doi: 10.1016/j.envint.2009.01.005.CrossRefGoogle Scholar
  56. Skei, J. M. (1978). Serious mercury contamination of sediments in a Norwegian semi-enclosed bay. Marine Pollution Bulletin, 9(7), 191–193.CrossRefGoogle Scholar
  57. Standing Committee of Analysts. (2006). The determination of metals in solid environmental samples (2006) (methods for the examination of waters and associated materials). UK: Environment Agency.Google Scholar
  58. Taylor, D., Smith, M., McKay, A., & Gettinby, J. (2006). Special site part IIA inspections, Holton Heath NNR. BAE Systems Environmental (pp. 2). http://www.baesystems.com/BAEProd/groups/public/@businesses/@sharedservices/documents/bae_case_study/pes_case_study_holton_heath_nn.pdf: Property & Environmental Services (PES), BAE Systems.
  59. Thornton, I., Watling, H., & Darracott, A. (1975). Geochemical studies in several rivers and estuaries used for oyster rearing. Science of the Total Environment, 4(4), 325–345. doi: 10.1016/0048-9697(75)90025-x.CrossRefGoogle Scholar
  60. Tolun, L. G., Okay, O. S., Gaines, A. F., Tolay, M., Tüfekçi, H., & Kıratlı, N. (2001). The pollution status and the toxicity of surface sediments in İzmit Bay (Marmara Sea), Turkey. Environment International, 26(3), 163–168. doi: 10.1016/s0160-4120(00)00096-9.CrossRefGoogle Scholar
  61. Tsangaris, C., Cotou, E., Papathanassiou, E., & Nicolaidou, A. (2010). Assessment of contaminant impacts in a semi-enclosed estuary (Amvrakikos Gulf, NW Greece): Bioenergetics and biochemical biomarkers in mussels. Environmental Monitoring and Assessment, 161(1), 259–269. doi: 10.1007/s10661-008-0743-2.CrossRefGoogle Scholar
  62. Turner, A. (2000). Trace metal contamination in sediments from UK estuaries: An empirical evaluation of the role of hydrous iron and manganese oxides. Estuarine Coastal and Shelf Science, 50(3), 355–371.CrossRefGoogle Scholar
  63. Wainipee, W., Weiss, D. J., Sephton, M. A., Coles, B. J., Unsworth, C., & Court, R. (2010). The effect of crude oil on arsenate adsorption on goethite. Water Research, 44(19), 5673–5683. doi: 10.1016/j.watres.2010.05.056.CrossRefGoogle Scholar
  64. Walker, C. H., Hopkin, S. P., Sibly, R. M., & Peakall, D. B. (2006). Principles of ecotoxicology (3rd ed.). CRC Press, Taylor & Francis Group, Boca Raton, FL.Google Scholar
  65. Wardlaw, J. (2005). Water quality and pollution monitoring in Poole Harbour. In The ecology of Poole Harbour (vol. 7, pp. 219–222, Proceedings in Marine Science). UK: Elsevier.Google Scholar
  66. West, I. M. (2011). Petroleum geology of the south of England. http://www.soton.ac.uk/~imw/Oil-South-of-England.htm. Accessed 13th December 2011.
  67. White, S. J. (1991). The effects of effluent from Poole sewage treatment works upon the intertidal macrofauna of Holes Bay, Poole Harbour (p. 11). Wessex Region: NRA.Google Scholar
  68. Witt, S. (2008). A summary of ecological monitoring carried out by the environment agency in Poole Harbour 2000–2007. Blandford: Dorset Environment Agency.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Walid Aly
    • 1
  • Ian D. Williams
    • 1
  • Malcolm D. Hudson
    • 2
  1. 1.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  2. 2.Centre for Environmental Sciences, Faculty of Engineering and the EnvironmentUniversity of SouthamptonHampshireUK

Personalised recommendations