Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 4, pp 3561–3579 | Cite as

Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling

  • Murali Krishna Gumma
  • Paul PavelicEmail author
Article

Abstract

Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions.

Keywords

Groundwater potential zones GIS and remote sensing Spatial modeling Borehole data Ghana 

Notes

Acknowledgments

This study was financially supported by the Rockefeller Foundation through project number 2008-AGR-305 “Groundwater in sub-Saharan Africa: Implications for food security and livelihoods” as a part of the CGIAR Research Program on Climate Change, Agriculture and Food Security. The authors would like to sincerely thank Dr. Mehnaz for generating the geomorphology map and Dr. Emmanuel Obuobie (CSIR—Water Research Institute) and Mr. Gerald Forkuor (IWMI) for data provision and peer review of this work. We are grateful to the Geological Survey Department of Ghana for access to the soils, geology, and watershed boundary data that enabled this research to proceed. The lead author would like to also thank Dr. Andrew Nelson and Dr. Alice Laborte (IRRI) for their encouragement during the latter stages of the research.

References

  1. Asomaning, G. (1993). Groundwater resources of the Birim basin in Ghana. Journal of African Earth Sciences (and the Middle East), 15(3-4), 375–384. no. 3–4.CrossRefGoogle Scholar
  2. CSIR/WRI. (2003). Groundwater assessment: an element of integrated water resources management—the case of Densu River Basin, July 2003. http://www.wrc-gh.org/nationalwaterpolicy.html.
  3. ERDAS. (2007). ERDAS field guide, Volume 1, October 2007.Google Scholar
  4. ESRI. (2009). ESRI Field Guide, Volume 1, October 2009.Google Scholar
  5. FAO. (2005). Aquastat, FAO water report 29, 2005. http://www.fao.org/nr/water/aquastat/countries/ghana/index.stm.
  6. GIDA. (2000). Annual report. Ghana: Ghana Irrigation Development Authority.Google Scholar
  7. GIDA. (2001). General information on public irrigation projects in Ghana. Ghana: Ghana Irrigation Development Authority.Google Scholar
  8. Gill, H. E. (1969). A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces. US Geological Survey water-supply paper 1757-K (pp. 1–37). Washington, DC: US Geological Survey.Google Scholar
  9. Giordano, M. (2006). Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: a first-cut assessment. Hydrogeology Journal, 14(3), 310–318. no. 3.CrossRefGoogle Scholar
  10. Gumma, M. K., Thenkabail, P. S., Fujii, H., & Namara, R. (2009). Spatial models for selecting the most suitable areas of rice cultivation in the Inland Valley Wetlands of Ghana using remote sensing and geographic information systems. Journal of Applied Remote Sensing, 3, 033537.CrossRefGoogle Scholar
  11. Gumma, M. K., Thenkabail, P. S., & Barry, B. (2010). Delineating shallow groundwater irrigated areas in the Atankwidi watershed (northern Ghana, Burkina Faso) using Quickbird 0.61–2.44 meter data. African Journal of Environmental Science and Technology, 4(7), 455–664. no. 7.Google Scholar
  12. Gumma, M. K., Thenkabail, P. S., Hideto, F., Nelson, A., Dheeravath, V., & Busia, D. (2011). Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sensing, 3(4), 816–835.CrossRefGoogle Scholar
  13. Hellden, U., Olsson, L., & Stern, M. (1982). Approaches to desertification monitoring in Sudan. In L. G. Lery (Ed.), Satellite remote sensing in developing counties (pp. 131–144). Paris: European Space Agency.Google Scholar
  14. Hsin, F. Y., Cheng, H. L., Kuo, C. H., & Change, P. H. (2008). GIS for assessment of the groundwater recharge potential. Environmental Geology, 58, 185–195.Google Scholar
  15. ICHS (Inter-African Committee for Hydraulic Studies). (1986). Explanatory notice and recommended usage of the map of potential groundwater resources in western and central Africa 1:5,000,000. Orléans: ICHS, BRGM.Google Scholar
  16. ISSER. (2002). The state of the Ghanaian economy. Ghana: The Institute of Statistical, Social and Economic Research (ISSER), University of Ghana.Google Scholar
  17. Kamaraju, M. V. V., Bhattacharya, A., Sreenivasa, R., Chandrasekhar, R., Murthy, G. S., & Malleswara Rao, T. C. H. (1996). Ground-water potential evaluation of West Godavari district, Andhra Pradesh State, India—a GIS approach. Ground Water, 34, 318–325.CrossRefGoogle Scholar
  18. Kumar, A., & Srivastava, S. K. (1991). Geomorphological unit, their geohydrological characteristics and vertical electrical sounding response near Mungre, Bhihar. J. Indian Society of Remote Sensing, 19(4), 205–215.CrossRefGoogle Scholar
  19. Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601.CrossRefGoogle Scholar
  20. Kushwaha, S. P. S. (1993). Application of remote sensing in shifting cultivation areas. Technical report (pp. 23–28). Freiburg: Abteilung Luftbildmessung and Fernerkundung, Universitat Freiburg.Google Scholar
  21. Lamptey, N.L. (2006). Urban poverty reduction project launched. Daily Graphic, 4-3-06, p. 18Google Scholar
  22. MacDonald, A.M. and Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa. British Geological Survey technical report WC/00/33.Google Scholar
  23. MacDonald, A.M., R.C. Calow, A.L. Nicol, B. Hope, and N.S. Robins. (2001). Ethiopia: water security and drought. British Geological Survey technical report WC/01/02.Google Scholar
  24. Martin, N., & van de Giesen, N. (2005). Spatial distribution of groundwater production and development potential in the Volta river basin of Ghana and Burkina Faso. Water International, 30(2), 239–249.CrossRefGoogle Scholar
  25. Masiyandima, M., & Giordano, M. (2007). Sub-Saharan Africa: opportunistic exploitation. In M. Giordano & K. Villholth (Eds.), The agricultural groundwater revolution: opportunities and threats to development (pp. 79–99). Wallingford: CABI.CrossRefGoogle Scholar
  26. Mattikalli, H. M., Devereux, B. J., & Richards, K. S. (1995). Integration of remote sensed satellite images with a geographical information system. Computers and Geosciences, 21, 947–956.CrossRefGoogle Scholar
  27. Murthy, K. S. R. (2000). Groundwater potential in a semi-arid region of Andhra Pradesh—a geographical information system approach. International Journal of Remote Sensing, 21(9), 1867–1884.CrossRefGoogle Scholar
  28. Murthy, K. S. R., & Mamo, A. G. (2009). Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. International Journal of Remote Sensing, 30(11), 2729–2740.CrossRefGoogle Scholar
  29. Nag, S. K. (2005). Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. Journal of Indian Society of Remote Sensing, 33(4), 521–529.CrossRefGoogle Scholar
  30. Ngigi, S. N. (2009). Climate change adaptation strategies: water resources management options for smallholder farming systems in sub-Saharan Africa. New York: The MDG Centre for East and Southern Africa, The Earth Institute at Columbia University. 189p.Google Scholar
  31. NRSA (National Remote Sensing Agency). (2000). Methodology manual of ground water prospective zone maps. Rajiv Gandhi National Rural Drinking Water Mission, technical guidelines for preparation of ground water prospects maps (pp. 17–18). Hyderabad: Department of Space.Google Scholar
  32. Quansah, C. (2000). Country case study: Ghana. In FAO: integrated soil management for sustainable agriculture and food security FAO-RAF 2000/01, Accra, pp. 33–75.Google Scholar
  33. Rashid, M., M. Lone, and S. Ahmed. (2011). Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environmental Monitoring and Assessment, 184, 4829–4839.Google Scholar
  34. Saraf, A. K., & Chowdhury, E. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10), 1825–1841.CrossRefGoogle Scholar
  35. Sidhu, R.S., and Mehta, R.S. (1989). Delineation of groundwater potential zones in Kushawati river watershed a tributary of Zauri river in Goa, using remotely sensed data. In Proceedings of National Symposium on Engineering Applications of Remote Sensing and Recent Advantages, Indore (M.P), India, pp. 41–46.Google Scholar
  36. Smith, A. Y., & Blackwell, R. J. (1980). Development of an information data base for watershed monitoring. Photogrammetric Engineering & Remote Sensing, 46, 1027–1038.Google Scholar
  37. Subba Rao, N. (2006). Groundwater potential index in a crystalline terrain using remote sensing data. Environ. Geology, 50, 1067–1076.CrossRefGoogle Scholar
  38. Subba Rao, N. (2009). A numerical scheme for groundwater development in a watershed basin of basement terrain: a case study from India. Hydrology Journal, 17, 379–396.Google Scholar
  39. Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182.CrossRefGoogle Scholar
  40. Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., & De Dieu, M. J. (2004). Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment, 90(1), 23–43.CrossRefGoogle Scholar
  41. Titus, R., H. Beekman, S. Adams, and L. Strachan. (2009). The basement aquifers of Southern Africa. Water Research Commission report no. TT 428-09.Google Scholar
  42. Trotter, C. M. (1991). Remotely sensed data as information source for geographical information system in natural resources management: a review. International Journal of Remote Sensing, 5, 225–239.Google Scholar
  43. WHYMAP. (2008). Groundwater resources of the world. BGR/UNESCO. Accessed at: http://www.whymap.org.
  44. Woodford, A., P. Rosewarne, and J. Girman. (2006). How much groundwater does South Africa have? Accessed at: www.srk.co.uk/groundwater/PDFs/1_A_Woodford.pdf.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.International Rice Research InstitutePatancheruIndia
  2. 2.International Water Management InstituteHyderabadIndia

Personalised recommendations