Environmental Monitoring and Assessment

, Volume 185, Issue 4, pp 3359–3368 | Cite as

No relationship found between mercury and lead concentrations in muscle and scales of chub Squalius cephalus L.

  • Zdenka Valová
  • Hana Hudcová
  • Kevin Roche
  • Jana Svobodová
  • Ilja Bernardová
  • Pavel Jurajda


We examined the relationship between muscle and scale mercury (Hg) and lead (Pb) concentrations in chub Squalius cephalus L. from six riverine sites in the Czech Republic in order to determine whether scale analysis alone could provide a nonlethal and convenient method for prediction of heavy metal concentration in muscle tissue. Our results confirm tissue-specific heavy metal accumulation in chub, with Hg tending to accumulate primarily in muscle tissue and Pb in scales. We found no significant relationship, however, for concentrations of either Pb or Hg between muscle tissue and scales of chub. Our results indicate that scales cannot be used for predicting heavy metal contamination in muscle of chub and we recommend, therefore, that muscle biopsy methods continue as the preferred method of analysis.


Mercury Lead Chub Nonlethal methods Scales 



This study was supported by research project VaV SP/207/73/08 “Identification of anthropogenic pressures on the quantitative state of water and water ecosystems in the Morava and Dyje river basin district” and project ECIP P505/12/G112 “European Centre of Ichthyoparasitology”.

The authors are grateful to the officials and managers of the Czech Anglers Union and the Moravian Anglers Union for allowing us to sample fish, and the staff of Morava River Basin Authority for providing data on water contamination levels. We would like to thank Radoslava Funková for laboratory analysis, Mgr. Michal Janáč, Ph.D. for help with statistical analysis and all the people who helped in the field. Finally, we thank two anonymous referees for their helpful comments.


  1. Baker, R. F., Blanchfield, P. J., Paterson, M. J., Flett, R. J., & Wesson, L. (2004). Evaluation of nonlethal methods for the analysis of mercury in fish tissue. Transactions of the American Fisheries Society, 133, 568–576.CrossRefGoogle Scholar
  2. Barata, C., Fabregat, M. C., Cotín, J., Huertas, D., Solé, M., Quirós, L., et al. (2010). Blood biomarkers and contaminant levels in feathers and eggs to assess environmental hazards in heron nestlings from impacted sites in Ebro basin (NE Spain). Environmental Pollution, 158, 704–710.CrossRefGoogle Scholar
  3. Baruš, V., & Oliva, O. (1995). Fauna of the Czech and Slovak Republic—lampreys and fishes. Prague: Academia.Google Scholar
  4. Burger, J., & Gochfeld, M. (2007). Risk to consumers from mercury in Pacific cod (Gadus macrocephalus) from the Aleutians: Fish age and size effects. Environmental Research, 105, 276–284.CrossRefGoogle Scholar
  5. Červenka, R., Bednařík, A., Komárek, J., Ondračková, M., Jurajda, P., Vítek, T., et al. (2011). The relationship between the mercury concentration in fish muscles and scales/fins and its significance. Central European Journal of Chemistry, 9(6), 1109–1116.CrossRefGoogle Scholar
  6. Chalmers, A. T., Afrue, D. M., Gay, D. A., Brigham, M. E., Schmitt, C. J., & Lorenz, D. L. (2011). Mercury trends in fish from rivers and lakes in the United States, 1969–2005. Environmental Monitoring and Assessment, 175, 175–191.CrossRefGoogle Scholar
  7. Chen, Y. C., Chen, C. Y., Hwang, H. J., Chang, W. B., Yeh, W. J., & Chen, M. H. (2000). Comparison of the metal concentrations in muscle and liver tissues of fishes from the Erren River, southern Taiwan, after the restoration in 2000. Journal of Food and Drug Analysis, 12(4), 358–366.Google Scholar
  8. Christoforidis, A., Stamatis, N., Schmieder, K., & Tsachalidis, E. (2008). Organochlorine and mercury contamination in fish tissues from the River Nestos, Greece. Chemosphere, 70, 694–702.CrossRefGoogle Scholar
  9. Ciesielski, T., Pastukhov, M. V., Szefer, P., & Jenssen, B. M. (2010). Bioaccumulation of mercury in the pelagic food chain of Lake Baikal. Chemosphere, 78, 1378–1384.CrossRefGoogle Scholar
  10. Dórea, J. G. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health consideration. The Science of the Total Environment, 400, 93–114.CrossRefGoogle Scholar
  11. Dušek, L., Svobodová, Z., Janoušková, D., Vykusová, B., Jarkovský, J., Šmíd, R., et al. (2005). Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Multispecies monitoring study 1991–1996. Ecotoxology and Environmental Safety, 61, 256–267.CrossRefGoogle Scholar
  12. European Commission. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, 327, 1–72.Google Scholar
  13. Farrell, A. P., Hodaly, A. H., & Wang, S. (2000). Metal analysis of scales taken from arctic grayling. Archives of Environmental Contamination and Toxicology, 39, 515–522.CrossRefGoogle Scholar
  14. Gremillion, P. T., Cizdziel, J. V., & Cody, N. R. (2005). Caudal fin mercury as a non-lethal predictor of fish-muscle mercury. Environmental Chemistry, 2(2), 96–99.CrossRefGoogle Scholar
  15. Hamilton, S. J., Holley, K. M., Buhl, K. J., Bullard, F. A., Weston, L. K., & McDonald, S. F. (2002). Impact of selenium and other trace elements on the endangered razorback sucker. Environmental Toxicology, 17, 297–323.CrossRefGoogle Scholar
  16. Havelková, M., Dušek, L., Némethová, D., Poleszczuk, G., & Svobodová, Z. (2008). Comparison of mercury distribution between liver and muscle—A biomonitoring of fish from lightly and heavily contaminated localities. Sensors, 8, 4095–4109.CrossRefGoogle Scholar
  17. Houserová, P., Kuban, V., Spurný, P., & Habarta, P. (2006). Determination of total mercury and mercury species in fish and aquatic ecosystems of Moravian rivers. Veterinární Medicína, 51(33), 101–110.Google Scholar
  18. Jardine, T. D., Hunt, R. J., Pusey, B. J., & Bunn, S. E. (2011). A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes. Marine and Freshwater Research, 62, 83–90. doi: 10.1071/MF20211.CrossRefGoogle Scholar
  19. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  20. Karadede, H., & Ünlü, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 411, 1371–1376.CrossRefGoogle Scholar
  21. Kelly, M. H., Hagar, W. G., Jardine, T. D., & Cunjak, R. A. (2006). Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: How scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management, 26, 921–925. doi: 10.1577/M05-084.1.CrossRefGoogle Scholar
  22. Kružíková, K., Randák, T., Kenšová, R., Kroupová, H., Leontovyčová, D., & Svobodová, Z. (2008). Mercury and methylmercury concentrations in muscle tissue of fish caught in major rivers of the Czech Republic. Acta Veterinaria Brno, 77, 637–643.CrossRefGoogle Scholar
  23. Krywult, M., Klich, M., & Szarek-Gwiazda, E. (2008). Metal concentrations in chub, Leuciscus cephalus, from a submontane river. Acta Ichthyologica et Piscatoria, 38(1), 47–53.CrossRefGoogle Scholar
  24. Lake, J. L., Ryba, S. A., Serbst, J. R., & Libby, A. D. (2006). Mercury in fish scales as an assessment method for predicting muscle tissue mercury concentrations in Largemouth Bass. Archives of Environmental Contamination and Toxicology, 50, 539–544.CrossRefGoogle Scholar
  25. Law No. 246/1992 Sb for protection of cruelty to animals (2008) Statute book no. 409/2008 (pp. 6611–6645). The Government of the Czech RepublicGoogle Scholar
  26. Maceda-Veiga, A., Monroy, M., & De Sostoa, A. (2012). Metal bioaccumulation in the Mediterranean barbel (Barbus meridionalis) in a Mediterranean river receiving effluents from urban and industrial wastewater treatment plants. Ecotoxicology and Environmental Safety, 76, 93–101.CrossRefGoogle Scholar
  27. Malik, N., Biswas, A. K., Qureshi, T. A., Borana, K., & Virha, R. (2010). Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environmental Monitoring and Assessment, 160, 267–276.CrossRefGoogle Scholar
  28. Osmundson, B. C., May, T. W., & Osmundson, D. B. (2000). Selenium concentrations in the Colorado pikeminnow (Ptychocheilus lucius): Relationship with flows in the Upper Colorado River. Archives of Environmental Contamination and Toxicology, 38, 479–485.CrossRefGoogle Scholar
  29. Radnák, T., Žlábek, V., Pulkrabová, J., Kolařová, J., Kroupová, H., Široká, Z., et al. (2009). Effects of pollution on chub in the River Elbe, Czech Republic. Ecotoxicology and Environmental Safety, 72, 737–746.CrossRefGoogle Scholar
  30. Rashed, M. N. (2001). Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environmental Monitoring and Assessment, 68, 75–89.CrossRefGoogle Scholar
  31. Rolfhus, K. R., Sandheinrich, M. B., Wiener, J. G., Bailey, S. W., Thoreson, K. A., & Hammerschmidt, C. R. (2008). Analysis of fin clip as a nonlethal method for prediction mercury in fish. Environmental Science and Technology, 42(3), 871–877.CrossRefGoogle Scholar
  32. Ryba, S. A., Lake, J. L., Serbst, J. R., Libby, A. D., & Ayvazian, S. (2008). Assessment of caudal fin clip as a non-lethal technique for prediction of muscle tissue mercury concentrations in largemouth bass. Environmental Chemistry, 5(3), 200–203.CrossRefGoogle Scholar
  33. Sanderson, B. L., Tran Chau, D., Coe Holly, J., Pelekis, V., Steel, E. A., & Reichert, W. L. (2009). Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Transactions of the Americal Fisheries Society, 138, 1166–1177. doi: 10.1577/T08-086.1.CrossRefGoogle Scholar
  34. Sauer, G. R., & Watabe, N. (1989). Temporal and metal-specific patterns in the accumulation of heavy metals by the scales of Fundulus heteroclitus. Aquatic Toxicology, 14(3), 233–248.CrossRefGoogle Scholar
  35. Schmitt, C. J., & Brumbaugh, W. G. (2007). Evaluation of potentially nonlethal sampling methods for monitoring mercury concentrations in Smallmouth Bass (Micropterus dolomieu). Archives of Environmental Contamination and Toxicology, 53, 84–95.CrossRefGoogle Scholar
  36. Spurný, P., Mareš, J., Hedvábný, J., & Sukop, I. (2002). Heavy metal distribution in the ecosystems of the upper course of the Jihlava River. Czech Journal of Animal Science, 47(4), 160–167.Google Scholar
  37. Spurný, P., Mareš, J., Hedvábný, J., & Sukop, I. (2009). Residual metal contamination of the ecosystem in the lower course of the Jihlava River. Acta Veterinaria Brno, 78, 525–534.CrossRefGoogle Scholar
  38. Teodorof, L., Nastase, C., & Anuti, I. (2009). Bioaccumulation of heavy metals in fish from Dobrudja Aquaculture Farm. Revista de Chimie (Bucuresti), 60(11), 1235–1241.Google Scholar
  39. Valová, Z., Jurajda, P., Janáč, M., Bernardová, I., & Hudcová, H. (2010). Spatiotemporal trends of heavy metal concentrations in fish of the River Morava (Danube basin). Journal of Environmental Science and Health Part A, 45, 1892–1899.CrossRefGoogle Scholar
  40. Yoshitomi, T., Nakayasu, C., Hasegawa, S., Iida, A., & Okamoto, N. (1998). Site-specific lead distribution in scales of lead-administered carp (Cyprinus carpio) by non-destructive SR-XRF analysis. Chemosphere, 36(10), 2305–2310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zdenka Valová
    • 1
  • Hana Hudcová
    • 2
  • Kevin Roche
    • 1
  • Jana Svobodová
    • 2
  • Ilja Bernardová
    • 2
  • Pavel Jurajda
    • 1
  1. 1.Institute of Vertebrate Biology, v.v.i.Academy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.TGM Water Research Institute, v.v.i.BrnoCzech Republic

Personalised recommendations