Environmental Monitoring and Assessment

, Volume 185, Issue 4, pp 2989–2998 | Cite as

Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays

  • Olfa Hentati
  • Radhia Lachhab
  • Mariem Ayadi
  • Mohamed Ksibi


The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.


Crude oil Earthworms Avoidance response Shoots elongation Avena sativa 



The authors are indebted to Prof. Chris Carr from the University of California for English proofreading. The authors acknowledge the help and support of Dr. Adam Scheffczyk and Dr. Jörg Römbke from ECT Oekotoxikologie GmbH. Flörsheim; Germany


  1. Alexandrova, M. L., & Bochev, P. G. (2005). Oxidative stress during the chronic phase of stroke. Free Radical Biology & Medicine, 39, 297–316.CrossRefGoogle Scholar
  2. Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1), 142–148.CrossRefGoogle Scholar
  3. Baker, J. M. (1970). The effects of oils on plants. Environment and Pollution, 1(1), 27–44.CrossRefGoogle Scholar
  4. Banks, M. K., Mallede, H., & Rathbone, K. (2003). Rhizosphere microbial characterization in petroleum-contaminated soil. Soil and Sediment Contamination, 12, 371–385.CrossRefGoogle Scholar
  5. Black, C. A., Evan, D. D., & American Society of Agronomy. (1965). Methods of soil analysis. Agronomy, 9(2), 917–918.Google Scholar
  6. CEAEQ (Centre d’Expertise en Analyse Environnementale du Québec). (2003). Inhibition de la germination et de la croissance chez les semences de végétaux, MA.500-GCR 1.0. Québec: Ministère de l’Environnement du Québec.Google Scholar
  7. Cermak, J. H., Stephenson, G. L., Birkholz, D., Wang, Z., & Dixon, D. G. (2010). Toxicity of petroleum hydrocarbon distillates to soil organisms. Environmental Toxicology and Chemistry, 29(12), 2685–2694.CrossRefGoogle Scholar
  8. Chaineau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: biodegradation, Leaching and Toxicity Assessments. Water, Air, and Soil Pollution, 144, 419–440.CrossRefGoogle Scholar
  9. Dewis, J. and Freitas F. (1984) Physical and chemical methods of soil and water analysis. FAO Soil Bulletin 10. Rome: FAOUN-Food and Agriculture Organization of the United NationsGoogle Scholar
  10. Dorn, P. B., & Salanitro, J. P. (2000). Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere, 40, 419–426.CrossRefGoogle Scholar
  11. Ekundayo, E. O., Emede, T. O., & Osayande, D. I. (2001). Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soils of Midwestern Nigeria. Plant Foods for Human Nutrition, 56(4), 313–324.CrossRefGoogle Scholar
  12. Haanstra, L., Doelman, P., & Oude Voshaar, J. H. (1985). The use of sigmoidal dose response curves in soil ecotoxicological research. Plant and Soil, 84, 293–297.CrossRefGoogle Scholar
  13. Hanna, S. H. S., & Weaver, R. W. (2002). Earthworm survival in oil contaminated soil. Plant and Soil, 240(1), 127–132.CrossRefGoogle Scholar
  14. Heitkamp, M. A., Franklin, W., & Cerniglia, C. E. (1988). Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Applied and Environmental Microbiology, 54, 2549–2555.Google Scholar
  15. Hünd-Rinke, K., Lindemann, M., & Simon, M. (2005). Experiences with novel approaches in earthworm testing alternatives. Journal of Soils and Sediments, 5, 233–239.CrossRefGoogle Scholar
  16. IARC (International Agency for Research on Cancer) Working Group. (2000). Some Industrial Chemicals. In (Vol. 77IARC) Monographs on the Evaluation of the Carcinogenic Risk of Some Industrial Chemicals to Humans, Lyon, France, 15–22 February 2000.Google Scholar
  17. ISO 17512-2 (2005b) Soil quality—avoidance test for testing the quality of soils and effects of chemicals on behavior. Part 2: Test with collembolan (Folsomia candida), Geneva: International organization for standardizationGoogle Scholar
  18. ISO/17512-1 (2008a) Soil quality: avoidance test for determining the quality of soils and effects of chemicals on behavior. Part 1: Test with earthworms (Eisenia foetida and Eisenia andrei), International organization for standardization, Geneva, SwitzerlandGoogle Scholar
  19. Kyung-Hwa, B., Hee-Sik, K., Hee-Mock, O., Byung-Dae, Y., Jaisoo, K., & In-Sook, L. (2004). Effect of crude oil, oil components, and bioremediation on plant growth. Journal of Environmental Science and Health, Part A, 39(9), 2465–2472.CrossRefGoogle Scholar
  20. McElroy, A. E., Farrington, J. W., & Teal, J. M. (1989). Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In U. Varanasi (Ed.), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (pp. 1–39). Boca Raton: CRC Press.Google Scholar
  21. Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., & Zeiger, E. (1986). Salmonella mutagenicity test: II. Results from testing of 270 chemicals. Environmental Mutagenesis, 8(Supll 7), 1–119.CrossRefGoogle Scholar
  22. Natal-Da-Luz, T., Amorim, M. J. B., Römbke, J., & Sousa, J. P. (2008). Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response. Ecotoxicology and Environment Safety, 71(2), 545–551.CrossRefGoogle Scholar
  23. OECD 207 (1984) Earthworms acute toxicity tests. Guideline for testing of chemicals. Organization for Economic Co-operation and DevelopmentGoogle Scholar
  24. Ogboghodo, I. A., Iruaga, E. K., Osemwota, I. O., & Chokor, J. U. (2004). An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types—Forcados Light and Escravos Light. Environmental Monitoring and Assessment, 96, 143–152.CrossRefGoogle Scholar
  25. Quiñones-Aguilar, E. E., Ferrera-Cerrato, R., Gavi-Reyes, F., Fernandez-Linares, L., Rodriguez-Vazquez, R., & Alarcón, A. (2003). Emergence and growth of maize in a crude oil polluted soil. Agrociencia, 37, 585–594.Google Scholar
  26. Römbke, J., Jänsch, S., Schallnas, H.-J. and Terytze, K. (2005) Zusammenstellung und statistische Bearbeitung vorhandener Daten zur Wirkung von ausgewahlten Verbindungen auf Bodenorganismen und Ableitung von Bodenwerten fur den Pfad “Boden–Bodenorganismen. Abschlussbericht zum F+E Vorhaben des Umweltbundesamtes, FKZ 202 73 266.Google Scholar
  27. Schäefer, M., & Filser, J. (2007). The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied Soil Ecology, 36, 53–62.CrossRefGoogle Scholar
  28. Shin, K. H., Jung, H. Y., Chang, P. C., Choi, H. C., & Kim, K. W. (2005). Earthworm toxicity during chemical oxidation of diesel-contaminated sand. Environmental Toxicology and Chemistry, 24(8), 1924–1929.CrossRefGoogle Scholar
  29. Siddiqui, S., Adams, W. A., & Schollion, J. (2001). The phytotoxicity and degradation of diesel hydrocarbons in soil. Journal of Plant Nutrition and Soil Science, 164, 631–635.CrossRefGoogle Scholar
  30. SPAC (1998) Soil and Plant Analysis Council. In K. Yash (eds), Handbook on Reference Methods for Soil Analysis. New York: Taylor & Francis.Google Scholar
  31. Tang, J. C., Wang, M., Wang, F., Sun, Q., & Zhou, Q. X. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23(5), 845–851.CrossRefGoogle Scholar
  32. Villalobos, M., Avila-Forcada, A. P., & Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Water, Air, and Soil Pollution, 194(1-4), 151–161. doi: 10.1007/s11270-008-9704-1.CrossRefGoogle Scholar
  33. Wang, J., Zhang, Z. Z., Su, Y. M., He, W., He, F., & Song, H. G. (2008). Phytoremediation of petroleum polluted soil. Petrological Sciences, 5(2), 167–17.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Olfa Hentati
    • 1
    • 2
  • Radhia Lachhab
    • 2
  • Mariem Ayadi
    • 1
  • Mohamed Ksibi
    • 1
    • 2
  1. 1.University of Sfax, Laboratory of Water, Energy and Environment, National School of Engineers of Sfa (ENIS)SfaxTunisia
  2. 2.University of Sfax, High Institute of Biotechnology of Sfax (ISBS)SfaxTunisia

Personalised recommendations