Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2585–2593 | Cite as

Toxicological effects of major environmental pollutants: an overview



The last quarter of the twentieth century had witnessed a global surge in awakening against the unabated menace of environmental pollution. Among the various types of environmental pollution, water pollution is an age-old problem but it has gained an alarming dimension lately because of the problems of population increase, sewage disposal, industrial waste, radioactive waste, etc. Present scenario of water pollution calls for immediate attention towards the remediation and detoxification of these hazardous agents in order to have a healthy living environment. The present communication will deal with the toxicological effects of major environmental pollutants, viz. heavy metals, pesticides, and phenols.


Water pollution Heavy metals Phenols Pesticides Toxicity 


  1. Aboulhassan, M. A., Souabi, S., Yaacoubi, A., & Baudu, M. (2006). Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science and Technology, 3(4), 327–332.Google Scholar
  2. Alam, M. Z., Ahmad, S., & Malik, A. (2011). Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environ Monitoring and Assessment, 178(1–4), 281–291.CrossRefGoogle Scholar
  3. Al-Haq, M. I., Ugiyama, J. S., & Sobe, S. I. (2005). Applications of electrolyzed water in agriculture and food industries. Food Science and Technology Research, 11(2), 135–150.CrossRefGoogle Scholar
  4. Ansari, M. I., & Malik, A. (2009a). Genotoxicity of wastewaters used for irrigation of food crops. Environmental Toxicology, 24(2), 103–115.CrossRefGoogle Scholar
  5. Ansari, M. I., & Malik, A. (2009b). Genotoxicity of agricultural soils in the vicinity of industrial area. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 673(2), 124–132.CrossRefGoogle Scholar
  6. Athar, R., & Ahmad, M. (2002). Heavy metal toxicity. Effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water, Air, and Soil Pollution, 138, 165–180.CrossRefGoogle Scholar
  7. Agency for Toxic Substances and Disease Registry. (2008). Toxicological profile for phenol. Atlanta: US Department of Health and Human Services Public Health Service.Google Scholar
  8. Bennett, B. G. (1984) In: F.W.Sunderman, Jr. (Eds) Nickel in the human environment, IARC Scientific Publication, Lyon CEDEX.Google Scholar
  9. Beveridge, T. J., & Doyle, R. J. (1989). Metal ions and bacteria. New York: Wiley.Google Scholar
  10. Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds, recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82(8), 493–512.CrossRefGoogle Scholar
  11. Bojić, A., Purenović, M., Kocić, B., Mihailović, D., & Bojić, D. (2002). The comparison of aluminium effects and its uptake by Escherichia coli in different media. Central European Journal of Public Health, 10(1–2), 66–71.Google Scholar
  12. Borja, R., Alba, J., & Banks, C. J. (1996). impact of main phenolic compounds of olive mill wastewater on the kinetic of acetoclastic methanogenesis. Process Biochemistry, 32, 121–133.CrossRefGoogle Scholar
  13. Brooks, R. R. (1983). Biological methods for prospecting minerals. New York: Wiley.Google Scholar
  14. Cameron, K. S., Buchner, V., & Tchounwou, P. B. (2011). Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity, a literature review. Reviews on Environmental Health, 26(2), 81–92.CrossRefGoogle Scholar
  15. Cervantes, C. (1991). Bacterial interactions with chromate. Antonie Van Leeuwenhoek, 59, 229–233.CrossRefGoogle Scholar
  16. Chaudhaery, S. S., Roy, K. K., Shakya, N., Saxena, G., Sammi, S. R., Nazir, A., et al. (2010). Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment, pharmacophore-based virtual screening, synthesis, and pharmacology. Journal of Medicinal Chemistry, 53(17), 6490–6505.CrossRefGoogle Scholar
  17. Chinalia, F. A., Reghali-Seleghin, M. H., & Correa, E. M. (2007). 2,4-D toxicity, cause, effect and control. Terrestrial and Aquatic Environmental Toxicology, 1(2), 24–33.Google Scholar
  18. Cunningham, D. P., & Lundie, L. L. (1993). Precipitation of cadmium by Clostridium thermoaceticum. Applied and Environmental Microbiology, 59, 7–14.Google Scholar
  19. Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals: an overview. Indian Journal of Biotechnology, 7, 159–169.Google Scholar
  20. De Flora, S. (2000). Threshold mechanisms and site specificity in chromium (VI) carcinogenesis. Carcinogenesis, 21(4), 533–541.CrossRefGoogle Scholar
  21. De Lorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry, 20, 84–98.CrossRefGoogle Scholar
  22. Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1), 35–56.CrossRefGoogle Scholar
  23. Dillon, C. T., Lay, P. A., Bonin, A. M., Dixon, N. E., & Sulfa, Y. (2000). DNA Interactions and bacterial mutagenicity of some chromium(III) imine complexes and their chromium(V) analogues. evidence for chromium(V) intermediates in the genotoxicity of chromium(III). Australian Journal of Chemistry, 53(5), 411–424.CrossRefGoogle Scholar
  24. Ding, J., Zhang, X., Li, J., Song, L., Ouyang, W., Zhang, D., et al. (2006). Nickel compounds render anti-apoptotic effect to human bronchial epithelial beas-2B cells by induction of cyclooxygenase-2 through an IKKβ/p65-dependent and IKKα- and p50 independent pathway. The Journal of Biological Chemistry, 281, 39022–39032.CrossRefGoogle Scholar
  25. Ekosse, G., & Fouche, P. S. (2005). Spatial distribution of manganese in vegetation cover in the proximity of an abandoned manganese oxide mine and implication for future agriculture development in the region. Land Contamination and Reclamation, 13(3), 267–273.CrossRefGoogle Scholar
  26. Enger, E. D., & Smith, B. F. (1992). Environmental science, a study of interrelationships. Dubuque: William C Brown.Google Scholar
  27. Ergüder, T. H., Güven, E., & Demirer, G. N. (2003). The inhibitory effects of lindane in batch and upflow anaerobic sludge blanket reactors. Chemosphere, 50, 165–169.CrossRefGoogle Scholar
  28. Fatima, R. A., & Ahmad, M. (2005). Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Science of the Total Environment, 346, 256–273.CrossRefGoogle Scholar
  29. Fatima, R. A., & Ahmad, M. (2006). Genotoxicity of industrial wastewaters obtained from two different pollution sources in northern India: a comparison of three bioassays. Mutation Research, 609, 81–91.CrossRefGoogle Scholar
  30. Feo, M. L., Ginebreda, A., Eljarrat, E., & Barceló, D. (2010). Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. Journal of Hydrology, 393(3–4), 156–162.CrossRefGoogle Scholar
  31. Freedman, B. (1995). Environmental ecology. USA: Academic.Google Scholar
  32. Gasiorowski, K., Szyba, K., Wozniak, D., & Gulanowski, B. (1997). Inhibition of potassium dichromate mutagenicity by todralazine. Mutagenesis, 12(6), 411–415.CrossRefGoogle Scholar
  33. Gupta, A. K., & Ahmad, M. (2012). Assessment of cytotoxic and genotoxic potential of refinery waste effluent using plant, animal and bacterial systems. Journal of Hazardous Materials, 201–202, 92–99.CrossRefGoogle Scholar
  34. Hamid, A. A., Aiyelaagbe, O. O., & Balogun, G. A. (2011). Herbicides and its applications. Advances in Natural and Applied Sciences, 5(2), 201–213.Google Scholar
  35. Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio, biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.CrossRefGoogle Scholar
  36. Hooda, P. S., & Alloway, B. (1995). In R. Prost (Ed.), Contaminated soils biogeochemistry of trace elements, 3rd International Conference. Paris: INRA.Google Scholar
  37. Huang, C., Li, J., Costa, M., Zhang, Z., Leonard, S. S., Castranova, V., et al. (2001). Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Research, 61, 8051–8057.Google Scholar
  38. Huang, Y., Davidson, G., Li, J., Yan, Y., Chen, F., Costa, M., et al. (2002). Activation of nuclear factor-κb and not activator protein-1 in cellular response to nickel compounds. Environmental Health Perspectives, 110(5), 835–839.CrossRefGoogle Scholar
  39. Islam, E. L., Yang, X-e, He, Z.-L., & Mahmood, Q. (2007). Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Journal of Zhejiang University. Science B, 8(1), 1–13.CrossRefGoogle Scholar
  40. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.CrossRefGoogle Scholar
  41. Johnson, C. E., Siccama, T. G., Driscoll, C. T., Likens, G. E., & Moller, R. E. (1995). Changes in lead biogeochemistry in response to decreasing atmospheric inputs. Ecological Application, 5, 813–822.CrossRefGoogle Scholar
  42. Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2–3), 65–87.CrossRefGoogle Scholar
  43. Kamanavalli, C. M., & Ninnekar, H. Z. (2000). Biodegradation of propoxur by Pseudomonas species. World Journal of Microbiology and Biotechnology, 16(4), 329–331.CrossRefGoogle Scholar
  44. Kirk, R. E., & Othmer, D. F. (1978). Encyclopedia of chemical technology (3rd ed.). New York: Wiley.Google Scholar
  45. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58–80.CrossRefGoogle Scholar
  46. Langård, S. (1994). Nickel-related cancer in welders. Science of the Total Environment, 148, 303–309.CrossRefGoogle Scholar
  47. Lebeau, T., Bagot, D., Jézéquel, K., & Fabre, B. (2002). Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium, effects of Cd, pH and techniques of culture. Science of the Total Environment, 291(1–3), 73–83.CrossRefGoogle Scholar
  48. Leonard, D., Youssef, C. B., Destruhaut, C., Lindley, N. D., & Queinnec, I. (1999). Phenol degradation by Ralstonia eutropha, colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations. Biotechnology and Bioengineering, 65, 407–415.CrossRefGoogle Scholar
  49. Les, A., & Walker, R. W. (1984). Toxicity and binding of copper, zinc and cadmium by the blue-green alga, Croococcus parts. Water, Air, and Soil Pollution, 23, 129–139.CrossRefGoogle Scholar
  50. Lim, C. K., & Cooksey, D. A. (1993). Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. Journal of Bacteriology, 175, 4492–4498.Google Scholar
  51. Liu, Y., Chen, G., Zhang, J., Shi, X., & Wan, R. (2011). Uptake of cadmium from hydroponic solutions by willows (Salix spp.) seedlings. African Journal of Biotechnology, 10(72), 16209–16218.Google Scholar
  52. Malik, A., & Ahmad, M. (1995). Genotoxicity of some wastewaters of India. Environmental Toxicology and Water Quality, 10, 287–293.CrossRefGoogle Scholar
  53. Manios, T., Kypriotakis, Z., Manios, V., & Dialyna, G. (2002). Plant species in a two-year-old free water surface constructed wetland treating wastewater in the island of Crete. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, A37, 1327–1335.Google Scholar
  54. McLean, J., & Beveridge, Y. T. J. (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Applied and Environmental Microbiology, 67, 1076–1084.CrossRefGoogle Scholar
  55. Mena, S., Ortega, A., & Estrela, J. M. (2009). Oxidative stress in environmental-induced carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 674(1–2), 36–44.Google Scholar
  56. Mench, M., Tancogne, J., Gomez, A., & Juste, C. (1989). Cadmium bioavailabilty to Nicotiana toabcum L. Nicotiana rusticana L. and Zea mays L. grown in soil amended or not amended with cadmium nitrate. Biology and Fertility of Soils, 8, 48–53.Google Scholar
  57. Montesinos, E., & Bardaj, E. (2008). Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chemistry & Biodiversity, 5, 1225–1237.CrossRefGoogle Scholar
  58. Moschella, P., Laane, R., Bäck, S., Behrendt, H., Bendoricchio, G., Georgiou, S., Herman, P., Lindeboom, H., Skourtous, M., Tett, P., Voss, M., Windhorst, W. (2005). Group report, methodologies to support implementation of the water framework directive. Managing European Coasts Environmental Science, 137–152.Google Scholar
  59. Mrozik, A., Piotrowska-Seget, Z., & Łabużek, S. (2004). Cytoplasmatic bacterial membrane response to environmental perturbations. Polish Journal of Environmental Studies, 13(5), 487–494.Google Scholar
  60. Muniz, J. F., McCauley, L., Scherer, J., Lasarev, M., Koshy, M., Kow, Y. W., et al. (2008). Biomarkers of oxidative stress and DNA damage in agricultural workers, a pilot study. Toxicology and Applied Pharmacology, 227, 97–107.CrossRefGoogle Scholar
  61. Nawab, A., Aleem, A., & Malik, A. (2003). Determination of organochlorine pesticides in agricultural soil with special reference to gamma-HCH degradation by Pseudomonas strains. Bioresource Technology, 88(1), 41–46.CrossRefGoogle Scholar
  62. Nederlof, M. M., Van Riemsdijk, W. H. (1995). In: P. N. Huang, J. Berthelin, J. M. Bollag (eds.) Environmental impact of soil component interactions. New York: W. B. McGill and A. L. Page, Inc.Google Scholar
  63. Nye, D. (2000). Smoke gets in your eyes, pollution, aesthetics, and social class. Review of, Stradling, D. Smokestacks and progressives, environmentalists, engineers and air quality in America, 1881–1951. Johns Hopkins University Press, 1999. Reviews in American History, 28, 422–427.CrossRefGoogle Scholar
  64. Pagano, G., Manini, P., & Bagchi, D. (2003). Oxidative stress-related mechanisms are associated with xenobiotics exerting excess toxicity to Fanconi anemia cells. Environmental Health Perspectives, 111(14), 1699–1703.CrossRefGoogle Scholar
  65. Pazou, E. Y. A., Boko, M., van Gestel, C. A. M., Ahissou, H., Lalèyè, P., Akpona, S., et al. (2006). Organochlorine and organophosphorous pesticide residues in the Ouémé river catchment in the republic of Bénin. Environment International, 32, 616–623.CrossRefGoogle Scholar
  66. Phillips, P. J., & Bode, R. W. (2004). Pesticides in surface water runoff in south eastern New York State USA, seasonal and stormflow effects on concentrations. Pest Management Science, 60, 531–543.CrossRefGoogle Scholar
  67. Plimmer, J. R. (2003). Insecticidal carbamates. Encyclopedia of Agrochemicals. doi:10.1002/047126363X.agr243.
  68. Radjendirane, V., Bhat, M. A., & Vaidyanathan, C. S. (1991). Affinity purification and characterization of 2,4-dichlorophenol hydroxylase from Pseudomonas cepacia. Archives of Biochemistry and Biophysics, 288(1), 169–176.CrossRefGoogle Scholar
  69. Raja, C. E., Anbazhagan, K., & Selvam, G. S. (2006). Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World Journal of Microbiology and Biotechnology, 22(6), 577–585.CrossRefGoogle Scholar
  70. Rehana, Z., Malik, A., & Ahmad, M. (1995). Mutagenic activity of the Ganges water with special reference to the pesticide pollution in the river between Kachla and Kannauj (UP). Mutatation Research, 343, 137–144.CrossRefGoogle Scholar
  71. Richards, D. J., & Shieh, W. K. (1986). Biological fate of organic priority pollutants in the aquatic environment. Water Research, 20(9), 1077–1090.CrossRefGoogle Scholar
  72. Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal contaminated soils. Microbiology Ecology, 37, 218–224.CrossRefGoogle Scholar
  73. Roane, T. M., Pepper, I. L., & Miller, R. M. (1996). Microbial remediation of metals. In R. L. Crawford & D. L. Crawford (Eds.), Bioremediation, principles and applications (pp. 312–340). UK: Cambridge University Press.CrossRefGoogle Scholar
  74. Rogers, H. R. (1996). Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment, 185, 3–26.CrossRefGoogle Scholar
  75. Sabdono, A. (2010). Cadmium removal by a bioreducpium coral bacterium Pseudoalteromonas sp. Strain CD15 isolated from the tissue coral Goniastrea aspera, Jepara waters. Journal of Coastal Development, 13(2), 15–25.Google Scholar
  76. Saplakoglu, U., & Iscan, M. (1998). Sister chromatid exchanges in human lymphocytes treated with cadmium in G(0) and S phase of their cell cycles. Mutation Research, 412, 109–114.CrossRefGoogle Scholar
  77. Satake and Taguchi. (2003). Toxic metals in the environment. In Environmental toxicology (pp. 97–130). New Delhi: DPH Publishing. ISBN: 81-7141-350-1.Google Scholar
  78. Saxena, D., Gowri, P. M., Mago, R., & Srivastav, S. (2001). Removal of copper by Pseudomonas putida strain S4 isolated from copper mines. Indian Journal of Experimental Biology, 39(6), 590–593.Google Scholar
  79. Seth, P. K., Jaffery, F. N., & Khanna, V. K. (2000). Toxicology. Indian Journal of Pharmacology, 32, S134–S151.Google Scholar
  80. Sharma, K. K., & Kuhad, R. C. (2008). Laccase, enzyme revisited and function redefined. Indian Journal of Microbiology, 48(3), 309–316.CrossRefGoogle Scholar
  81. Shen, H., & Wang, Y. T. (1993). Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Applied and Environmental Microbiology, 59(11), 3771–3777.Google Scholar
  82. Siddiqui, A. H., & Ahmad, M. (2003). The Salmonella mutagenicity of industrial, surface and ground water sample of Aligarh region of India. Mutation Research, 541, 21–29.CrossRefGoogle Scholar
  83. Siddiqui, A. H., Tabrez, S., & Ahmad, M. (2011a). Validation of plant based bioassays for the toxicity testing of Indian waters. Environmental Monitoring and Assessment, 179(1–4), 241–253.CrossRefGoogle Scholar
  84. Siddiqui, A. H., Tabrez, S., & Ahmad, M. (2011b). Short term in vitro and in vivo genotoxicity testing systems for some water bodies of northern India. Environmental Monitoring and Assessment, 180(1–4), 87–95.CrossRefGoogle Scholar
  85. Singh, L., Choudhary, S. K., & Singh, P. K. (2011). Organochlorine and organophosphorous pesticides residues in water of river Ganga at Bhagalpur, Bihar, India. International Journal of Research in Chemistry and Environment, 1(1), 77–84.Google Scholar
  86. Srivastava, S. (2000). In M. Iqbal, P. S. Srivastava, & T. S. Siddique (Eds.), Hazards—plants and people. New Delhi: CBS Publishers.Google Scholar
  87. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–336.CrossRefGoogle Scholar
  88. Sultan, S., & Hasnain, S. (2003). Pseudomonad strains exhibiting high level Cr(VI) resistance and Cr(VI) detoxification potential. Bulletin of Environmental Contamination and Toxicology, 71(3), 473–480.CrossRefGoogle Scholar
  89. Sunderman, F. W., Jr. (1989). Mechanisms of nickel carcinogenesis. Scandinavian Journal of Work, Environment and Health, 15(1), 1–12.CrossRefGoogle Scholar
  90. Suzuki, S., Fukagawa, T., & Takama, K. (1992). Occurrence of tributyltin-tolerant bacteria in tributyltin or cadmium-containing seawater. Applied and Environmental Microbiology, 58, 3410–3412.Google Scholar
  91. Tabrez, S., & Ahmad, M. (2009). Effect of waste water intake on antioxidant and marker enzymes of tissue damage in rat tissues, implications for the use of biochemical markers. Food and Chemical Toxicology, 47(10), 2465–2478.CrossRefGoogle Scholar
  92. Tabrez, S., & Ahmad, M. (2010). Cytochrome P450 system as a toxicity biomarker of industrial wastewater in rat tissues. Food and Chemical Toxicology, 48(3), 998–1001.CrossRefGoogle Scholar
  93. Tabrez, S., & Ahmad, M. (2011a). Oxidative stress mediated genotoxicity of wastewaters collected from two different stations in northern India. Mutation Research, 726(1), 15–20.CrossRefGoogle Scholar
  94. Tabrez, S., & Ahmad, M. (2011b). Mutagenicity of industrial wastewaters collected from two different stations in northern India. Journal of Applied Toxicology, 31, 783–789.CrossRefGoogle Scholar
  95. Tabrez, S., & Ahmad, M. (2011c). Some enzymatic/non enzymatic antioxidants as potential stress biomarkers of trichloroethylene, heavy metal mixture and ethyl alcohol in rat tissues. Environmental Toxicology, 26(2), 207–216.CrossRefGoogle Scholar
  96. Tabrez, S., & Ahmad, M. (2011d). Components of antioxidative system in Allium cepa as the toxicity monitor of trichloroethylene (TCE). Toxicological and Environmental Chemistry, 93(1), 73–84.CrossRefGoogle Scholar
  97. Tabrez, S., Shakil, S., Urooj, M., Abuzenadah, A. M., Damanhouri, G. A., & Ahmad, M. (2011). Genotoxicity testing and biomarker studies on surface waters, an overview of the techniques and their efficacies. Journal of Environmental Science and Health. Part C, 29(3), 250–275.Google Scholar
  98. Thomas, K. V., Hurst, M. R., Matthiessen, P., Sheahan, D., & Williams, R. J. (2001). Toxicity characterisation of organic contaminants in storm waters from an agricultural headwater stream in South East England. Water Research, 35(10), 2411–2416.CrossRefGoogle Scholar
  99. Tibbetts, J. (2000). Water world 2000. Environmental Health Perspective, 108, 69–73.Google Scholar
  100. Tiryaki, O., & Temur, C. (2010). The fate of pesticide in the environment. Journal of Biological Environmental Science, 4(10), 29–38.Google Scholar
  101. Tyagi, P., Budhi, D., Choudhary, R., & Sawheny, R. L. (2000). Degradation of ground water quality due to heavy metals in industrial areas of India. Indian Journal of Environmental Protection, 20(3), 174–181.Google Scholar
  102. Uher, E., Mirande-Bret, C., Gourlay-Francé, C. (2011). Lessons from a large scale deployment of DGT in the Seine basin. Environmental Chemistry Group Bulletin.Google Scholar
  103. Viti, C., Pace, A., & Giovenneti, Y. L. (2003). Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Current Microbiology, 46, 1–5.CrossRefGoogle Scholar
  104. Waalkes, M. P., Liu, J., Goyer, R. A., & Diwan, B. A. (2004). Metallothionein-I/II double knockout mice are hypersensitive to lead-induced kidney carcinogenesis, Role of inclusion body formation. Cancer Research, 64(21), 7766–7772.CrossRefGoogle Scholar
  105. Wang, Q., & Lemley, A. T. (2003). Competitive degradation and detoxification of carbamate insecticides by membrane anodic fenton treatment. Journal of Agriculture and Food Chemistry, 51(18), 5382–5390.CrossRefGoogle Scholar
  106. Wang, C. L., Michels, P. C., Dawson, S. C., Kitisakkul, S., Baross, J. A., Keasling, J. D., et al. (1997). Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Applied and Environmental Microbiology, 63(10), 4075–4078.Google Scholar
  107. Wasi, S., Jeelani, G., & Ahmad, M. (2008). Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere, 71, 1348–1355.CrossRefGoogle Scholar
  108. Wasi, S., Tabrez, S., & Ahmad, M. (2010). Isolation and characterization of a Pseudomonas fluorescens strain tolerant to major Indian water pollutants. Journal of Bioremediation and Biodegradation, 1, 101.Google Scholar
  109. Wasi, S., Tabrez, S., & Ahmad, M. (2011a). Suitability of immobilized Pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals and pesticides from water. Water, Air, and Soil Pollution, 220(1–4), 89–99.CrossRefGoogle Scholar
  110. Wasi, S., Tabrez, S., & Ahmad, M. (2011b). Detoxification potential of Pseudomonas fluorescens SM1 strain for remediation of major toxicants in Indian water bodies. Water, Air, and Soil Pollution, 222(1–4), 39–51.CrossRefGoogle Scholar
  111. Watts, R. J. (1998). Hazardous wastes, sources, pathways, receptors. New York: Wiley.Google Scholar
  112. Widenfalk, A., Bertilsson, S., Sundh, I., & Goedkoop, W. (2008). Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environmental Pollution, 152(3), 576–584.CrossRefGoogle Scholar
  113. Wuana, R. A., & Okieimen, F. E. (2010). Phytoremediation potential of maize (Zea mays L.). A review. African Journal of General Agriculture, 6(4), 275–287.Google Scholar
  114. Yadav, S. K. (2010). Pesticide applications-threat to ecosystems. Journal of Human Ecology, 32(1), 37–45.Google Scholar
  115. Yap, L. F., Lee, Y. K., & Poh, C. L. (1999). Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Applied Microbiology and Biotechnology, 51(6), 833–840.CrossRefGoogle Scholar
  116. Zoroddu, M. A., Schinocca, L., Kowalik-Jankowska, T., Kozlowski, H., Salnikow, K., & Costa, M. (2002). Molecular mechanisms in nickel carcinogenesis, Modeling Ni(II) binding site in histone H4. Environmental Health Perspectives, 110, 719–723.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of MedicineUniversity of DammamDammamKingdom of Saudi Arabia
  2. 2.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Department of Biochemistry, Faculty of Life SciencesAMUAligarhIndia

Personalised recommendations