Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2243–2255 | Cite as

An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery

  • Jun Chen
  • Wenting Quan
Article

Abstract

In this study, an improved Moderate-Resolution Imaging Spectroradiometer (MODIS) ocean chlorophyll-a (chla) 3 model (IOC3M) algorithm was developed as a substitute for the MODIS global chla concentration estimation algorithm, OC3M, to estimate chla concentrations in waters with high suspended sediment concentrations, such as the Yellow River Estuary, China. The IOC3M algorithm uses \( {{{\left[ {R_{\text{rs}}^{{ - 1}}\left( {{\lambda_{{1}}}} \right) - {k_1}R_{\text{rs}}^{{ - 1}}\left( {{\lambda_{{2}}}} \right)} \right]}} \left/ {{\left[ {R_{\text{rs}}^{{ - 1}}\left( {{\lambda_{{3}}}} \right) - {k_{{2}}}R_{\text{rs}}^{{ - 1}}\left( {{\lambda_{{4}}}} \right)} \right]}} \right.} \) to substitute for switching the two-band ratio of max [R rs (443 nm), R rs (488 nm)]/R rs (551 nm) of the OC3M algorithm. In the IOC3M algorithm, the absorption coefficient of chla can be isolated as long as reasonable bands are selected. The performance of IOC3M and OC3M was calibrated and validated using a bio-optical data set composed of spectral upwelling radiance measurements and chla concentrations collected during three independent cruises in the Yellow River Estuary in September of 2009. It was found that the optimal bands of the IOC3M algorithm were λ1 = 443 nm, λ2 = 748 nm, λ3 = 551 nm, and λ4 = 870 nm. By comparison, the IOC3M algorithm produces superior performance to the OC3M algorithm. Using the IOC3M algorithm in estimating chla concentrations from the Yellow River Estuary decreases 1.03 mg/m3 uncertainty from the OC3M algorithm. Additionally, the chla concentration estimated from MODIS data reveals that more than 90 % of the water in the Yellow River Estuary has a chla concentration lower than 5.0 mg/m3. The averaged chla concentration is close to the in situ measurements. Although the case study presented herein is unique, the modeling procedures employed by the IOC3M algorithm can be useful in remote sensing to estimate the chla concentrations of similar aquatic environments.

Keywords

OC3M algorithm IOC3M algorithm Chlorophyll-a concentration Yellow River Estuary MODIS 

References

  1. ASD (1999). Analytic Spectral Devices, Inc. Technical Guide, 3rd Ed.Google Scholar
  2. Bailey, S. W., & Werdell, P. J. (2006). A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102, 12–23.CrossRefGoogle Scholar
  3. Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., & Cannizzaro, J. P. (2003). Case 2 chlorophyll-a. MODIS Ocean Science Team Algorithm Theoretical Basis Document.Google Scholar
  4. Casal, G., Kutser, T., Domingue-Gomez, J. A., Sanchez-Carnero, N., & Freire, J. (2011). Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images. Estuarine, Coastal and Shelf Science, 94, 281–290.CrossRefGoogle Scholar
  5. Chen, Z. Q., Hu, C. M., & Muller-Karger, F. (2007). Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sensing of Environment, 109, 207–220.CrossRefGoogle Scholar
  6. Chen, J., Zhou, G. H., Wen, Z. H., Ma, J. F., Zhang, X., Peng, D. Q., & Yang, S. L. (2010). Study on quantitative model for suspended sediment concentration in Taihu Lake. Spectroscopy and Spectral Analysis, 30(1), 137–141.Google Scholar
  7. Chen, J., Wen, Z. H., Fu, J., Sun, J. H., Wang, B. J., & Gao, X. J. (2011a). The principles and application of water color remote sensing (1st ed.). Beijing: Oceanic Publication.Google Scholar
  8. Chen, J., Wen, Z. H., & Xiao, Z. Q. (2011b). Spectral geometric triangle properties of chlorophyll-a inversion in Taihu Lake based on TM data. Journal of Water Resource and Projection, 3(1), 67–75.CrossRefGoogle Scholar
  9. Dall’Olmo, G., Gitelson, A. A., & Rundquist, D. C. (2003). Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive water. Geophysical Research Letters, 30. doi: 10.1029/2003GL0108065.
  10. Dall’Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., & Holz, J. C. (2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96, 176–187.CrossRefGoogle Scholar
  11. Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2002). Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data. International Journal of Remote Sensing, 23, 15–35.CrossRefGoogle Scholar
  12. Deng, M., & Li, Y. (2003). Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment. International Journal of Remote Sensing, 24(3), 519–534.CrossRefGoogle Scholar
  13. Doxaran, D., Froidefond, J. M., Lavender, S., & Castaing, P. (2002). Spectral signature of highly turbid water application with SPOT data to quantify suspended particulate matter concentration. Remote Sensing of Environment, 81, 149–161.CrossRefGoogle Scholar
  14. Eiras-Garcia, G. A., Tavano-Garcia, V. M., & McClain, C. R. (2005). Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment, 95, 125–137.CrossRefGoogle Scholar
  15. Gilpin, L., & Tett, P. (2001). A methods for analysis of benthic chlorophyll-a pigment. In: Marine biology report. UK: Napier University Press, 326–341.Google Scholar
  16. Gitelson, A. A., Schalles, J. F., & Hladik, C. M. (2007). Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay Case Study. Remote Sensing of Environment, 109, 464–472.CrossRefGoogle Scholar
  17. Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment, 112, 3582–3593.CrossRefGoogle Scholar
  18. Gons, H. J., Auer, M. T., & Effler, S. W. (2008). MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sensing of Environment, 112, 4098–4106.CrossRefGoogle Scholar
  19. Gordon, H. R., & Franz, B. A. (2008). Remote sensing for ocean color: assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons. Remote Sensing of Environment, 112, 2667–2685.CrossRefGoogle Scholar
  20. Gordon, H. R., & Voss, K. J. (1999). MODIS normalized water-leaving radiance algorithm theoretical basis document. NASA Technical Report Series, NAS5-31363.Google Scholar
  21. Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., & Clark, D. K. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93, 10909–10924.CrossRefGoogle Scholar
  22. Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200 nm to 200micrometer meter wavelength region. Applied Optics, 12(3), 555–563.CrossRefGoogle Scholar
  23. Hyde, K. J. W., O’Reilly, J. E., & Oviatt, C. A. (2007). Validation of SeaWiFS chlorophyll a in Massachusetts Bay. Remote Sensing of Environment, 27, 1677–1691.Google Scholar
  24. Jimenez-Munoz, J. C., Sobrino, J. A., Mattar, C., & Franch, B. (2010). Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products. Remote Sensing of Environment, 114, 2195–2210.CrossRefGoogle Scholar
  25. Kimberly, J. W., O’Reilly, J. E., & Oviatt, C. A. (2007). Validation of SeaWiFS chlorophyll a in Massachusetts Bay. Continental Shelf Research, 27, 1677–1691.CrossRefGoogle Scholar
  26. Komick, N. M., Costa, M. P. F., & Gower, J. (2009). Bio-optical algorithm evaluation for MODIS for western Canada coastal waters: an exploratory approach using in situ reflectance. Remote Sensing of Environment, 113, 794–804.CrossRefGoogle Scholar
  27. Le, C. F., Li, Y. M., Zha, Y., Sun, D. Y., Huang, C. C., & Lu, H. (2009). A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China. Remote Sensing of Environment, 113, 1175–1182.CrossRefGoogle Scholar
  28. Lee, Z. P., Carder, K. L., Hawes, S. H., Steward, R. G., Peacock, T. G., & Davis, C. O. (1994). A model for interpretation of hyperspectral remote sensing reflectance. Applied Optics, 33, 5721–5732.CrossRefGoogle Scholar
  29. Marrari, M., Hu, C., & Daly, K. (2006). Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: a revisit. Remote Sensing of Environment, 105, 367–375.CrossRefGoogle Scholar
  30. Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855–6899.CrossRefGoogle Scholar
  31. McClain, C. R., Feldman, G. C., Hooker, S. B., & Bontempi, P. (2006). Satellite data for ocean biology, biogeochemistry, and climate research. EOS Transactions, 87(34), 337–343.CrossRefGoogle Scholar
  32. Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of river sediment to the oceans. Journal of Geology, 91, 1–21.CrossRefGoogle Scholar
  33. Moore, T. S., Campbell, J. W., & Dowell, M. D. (2009). A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113, 2424–2430.CrossRefGoogle Scholar
  34. Morel, A., & Maritorena, S. (2001). Bio-optical properties of oceanic waters: a reappraisal. Journal of Geophysical Research, 16(C4), 7163–7180.CrossRefGoogle Scholar
  35. Morel, A., & Prieur, L. (1977). Analysis of variances in ocean color. Limnology and Oceanography, 22, 709–722.CrossRefGoogle Scholar
  36. Mueller, J. L., & Fargion, G. S. (2002). Ocean optics protocols for satellite ocean color sensor validation. SeaWiFS Technical Report Series, Revision 3 Part II, 171–179.Google Scholar
  37. O’Reilly, J. E., Maritorena, S., O’Brien, M. C., Siegel, D. A., Toole, D., & Menzies, D. (2000). SeaWiFS postlaunch calibration and validation analysis, part 3. NASA Technical Menorandum 2000-206892Tech, 11, NASA.Google Scholar
  38. Ouaidrari, H., & Vermote, E. F. (1999). Operational atmospheric correction of Landsat TM data. Remote Sensing of Environment, 70, 4–15.CrossRefGoogle Scholar
  39. Oyama, Y., Matsushita, B., Fulkushima, T., Matsushige, K., & Imai, A. (2009). Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 73–85.CrossRefGoogle Scholar
  40. Tachiiri, K. (2005). Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6 S code: a case study in the Marsabit District, Kenya. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 103–114.CrossRefGoogle Scholar
  41. Wang, M. H., Son, S. H., & Shi, W. (2009). Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment, 113, 635–644.CrossRefGoogle Scholar
  42. Wang, H. J., Bi, N. S., Saito, Y. S., Wang, Y., Sun, X. X., & Zhang, J. (2010). Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: causes and environmental implications in its estuary. Journal of Hydrology, 391, 302–313.CrossRefGoogle Scholar
  43. Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39, 1985–1992.CrossRefGoogle Scholar
  44. Werdell, P. J., Bailey, S. W., Franz, B. A., Harding, L. W., Feldman, G. C., & McClain, C. R. (2009). Regional and seasonal variability of chlorophyll-a in Chesapeak Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sensing of Environment, 113, 1319–1330.CrossRefGoogle Scholar
  45. Zhang, C., Hu, C., Shang, S., Müller-Karger, F. E., Li, Y., Dai, M., Huang, B., Ning, X., & Hong, H. (2006). Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China. Remote Sensing of Environment, 102, 250–263.CrossRefGoogle Scholar
  46. Zhang, M. W., Tang, J. W., Dong, Q., Song, Q. T., & Ding, J. (2010). Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114, 392–403.CrossRefGoogle Scholar
  47. Zhen, Z. S., & Po, L. (2002). An iterative method of solving the nonlinear least square problem. Mathematical Theory and Applications, 22, 41–45.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Ocean SciencesChina University of GeosciencesBeijingChina
  2. 2.The Key Laboratory of Marine Hydrocarbon Resources and Environmental GeologyQingdao Institute of Marine GeologyQingdaoChina
  3. 3.Shanxi Remote Sensing Information Center for AgricultureXianChina

Personalised recommendations