Advertisement

Environmental Monitoring and Assessment

, Volume 185, Issue 3, pp 2157–2166 | Cite as

Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom

  • Zakaria A. MohamedEmail author
  • Abdulrahman M. Al-Shehri
Article

Abstract

This study reports the presence of the cyanobacterial toxin cylindrospermopisn (CYN) and its producer Cylindrospermopsis raciborskii for the first time in Saudi freshwater sources. C. raciborskii was found in Gazan Dam Lake water with two morphotypes (coiled and straight). The appearance and cell density of this species was significantly positively related to high temperature and high ammonium concentrations, and negatively with nitrate and phosphate concentrations in the lake. Intracellular concentrations of CYN (4–173 μg L−1) were associated with C. raciborskii rather than other cyanobacteria with a maximal value obtained in June 2011, coinciding with the highest bloom of this species (19 × 107 trichome L−1). CYN cell quotas (0.6–14.6 pg cell−1) varied significantly along the study period and correlated with most environmental factors. The results of ELISA and liquid chromatography-mass spectrometry proved that the CYN production by strains of this species was isolated from this lake during the present study, with an amount reaching 568 μg g−1. Extracellular CYN was also detected in cell-free lake water at concentrations 0.03–23.3 μg L−1, exceeding the drinking water guideline value of 1 μg L−1 during the Apr–Jul period. As this lake is an important source for drinking and irrigation waters, CYN monitoring should be included in the environmental and health risk assessment plans of these water bodies.

Keywords

Cylindrospermopsin Cylindrospermopsis raciborskii Drinking water Irrigation water Saudi Arabia 

References

  1. American Public Health Association. (1995). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.Google Scholar
  2. Antal, O., Karisztl-Gácsi, M., Farkas, A., Kovács, A., TörT, A. A. N., Kiss, G., Saker, M. L., Tri, J. G., Bánfalvi, G., & Vehovszky, Á. (2011). Screening the toxic potential of Cylindrospermopsis raciborskii strains isolated from Lake Balaton, Hungary. Toxicon, 57(6), 831–840.CrossRefGoogle Scholar
  3. Bain, P., Shaw, P., & Patel, B. (2007). Induction of p53-regulated gene expression in human cell lines exposed to the cyanobacterial toxin cylindrospermopsin. Journal of Toxicology and Environmental Health, 70(19), 1687–1693.CrossRefGoogle Scholar
  4. Baron-Sola, A., Ouahid, Y., & delCampo, F. F. (2012). Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Ecotoxicology and Environmental Safety, 75, 102–108.CrossRefGoogle Scholar
  5. Bazin, E., Mourot, A., Humpage, A. R., & Fessard, V. (2010). Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environmental and Molecular Mutagenesis, 51, 251–259.Google Scholar
  6. Berry, J. P., & Lind, O. (2010). First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon, 55, 930–938.CrossRefGoogle Scholar
  7. Beyer, D., Suranyi, G., Vasas, G., Roszik, J., Erdodi, F., Hamvas, M., Bacsi, I., Batori, R., Serfozo, Z., Szigeti, Z. M., Vereb, G., Demeter, Z., Gonda, S., & Mathe, C. (2009). Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon, 54, 440–449.CrossRefGoogle Scholar
  8. Bláhová, L., Oravec, M., Marsálek, B., Sejnohová, L., Simek, Z., & Bláha, L. (2009). The first occurrence of the cyanobacterial alkaloid toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon, 53(519), 524.Google Scholar
  9. Briand, J. F., Robillot, C., Quiblier-Lioberas, C., Humbert, J. F., Coute, A., & Bernard, C. (2002). Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in shallow pond in France. Water Research, 36, 3183–3192.CrossRefGoogle Scholar
  10. Burford, M. A., & Davis, T. W. (2011). Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese Journal of Oceanology and Limnology, 29, 883–891.CrossRefGoogle Scholar
  11. Byth, S. (1980). Palm Island mystery disease. Medical Journal of Australia, 2, 40–42.Google Scholar
  12. Chiswell, R. K., Shaw, G. R., Eaglesham, G., Smith, M. J., Norris, K. R., Seawright, A. A., & Moore, M. R. (1999). Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature and sunlight on decomposition. Environmental Toxicology, 14, 155–161.CrossRefGoogle Scholar
  13. Croteau, R., Kutchan, T. M., & Lewis, N. G. (2002). Natural products (secondary products). In B. B. Buchanan, W. Gruissem, & R. L. Jones (Eds.), Biochemistry and molecular biology of plants. Indianapolis: Wiley.Google Scholar
  14. Desikachary, T. V. (1959). Cyanophyta. New Delhi, India: Indian Council of Agricultural Research.Google Scholar
  15. Eaglesham, G., Norris, K. R., Shaw, G. R., Smith, M. J., Chiswell, R. K., Davis, B. C., Neville, G. R., Seawright, A. A., & Moore, B. S. (1999). Use of HPLC-MS/MS to monitor cylindrospermopsin, a blue-green algal toxin, for public health purposes. Environmental Toxicology, 14, 151–154.CrossRefGoogle Scholar
  16. Falconer, I. R. (1999). An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology, 14, 5–12.CrossRefGoogle Scholar
  17. Fastner, F., Heinze, R., Humpage, A. R., Mischke, U., Eaglesham, G. K., & Chorus, I. (2003). Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon, 42, 313–321.CrossRefGoogle Scholar
  18. Figueredo, C. C., & Giani, A. (2009). Phytoplankton community in the tropical lake of Lagoa 863 Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica, 39, 264–272.CrossRefGoogle Scholar
  19. Hamilton, P. B., Ley, L. M., Dean, S., & Pick, F. R. (2005). The occurrence of the cyanobaterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia, 44, 17–25.CrossRefGoogle Scholar
  20. Hamvas, M. M., Máthé, C., Vasas, G., Jámbrik, K., Papp, M., Beyer, D., Mészáros, I., & Borbély, G. (2010). Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biologica Hungarica, 61, 35–48.CrossRefGoogle Scholar
  21. Hawkins, P. R., Chandrasena, N. R., Jones, G. J., Humpage, A. R., & Falconer, I. R. (1997). Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon, 35, 341–346.CrossRefGoogle Scholar
  22. Humpage, A. R., & Falconer, I. R. (2003). Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline. Environmental Toxicology, 18, 94–103.CrossRefGoogle Scholar
  23. Kinnear, S. H. W., Fabbro, L. D., Duivenvoorden, L. J., & Hibberd, E. M. A. (2007). Multiple-organ toxicity resulting from cylindrospermopsin exposure in tadpoles of the cane toad (Bufo marinus). Environmental Toxicology, 22, 550–558.CrossRefGoogle Scholar
  24. Kokocinski, M., Dziga, D., Spoof, L., Stefaniak, K., Jurczak, T., Mankiewicz-Boczek, J., & Meriluoto, J. (2009). First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 74, 669–675.CrossRefGoogle Scholar
  25. Komarek, J. & Anagnostidis, K. (2005). Cyanoprokaryota – 2. Teil: Oscillatoriales. Elsevier/Spektrum, Heidelberg.Google Scholar
  26. Komarek, J., & Komarkova, J. (2002). Phenotype diversity of the cyanoprokaryotic genus Cylindrospermopsis (Nostocales); review 2002. Czech Phycology, 3, 1–30.Google Scholar
  27. Long, B. M., Jones, G. J., & Orr, P. T. (2001). Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Applied and Environmental Microbiology, 67, 278–283.CrossRefGoogle Scholar
  28. Lyck, S. (2004). Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. Journal of Plankton Research, 26, 727–736.CrossRefGoogle Scholar
  29. Lyck, S., & Christoffersen, K. (2003). Microcystin quota, cell division and microcystin net production of pre-cultured Microcystis aeruginosa CYA 228 (Chroococcales, Cyanophyceae) under field conditions. Phycologia, 42, 667–674.CrossRefGoogle Scholar
  30. McGregor, G. B., & Fabbro, L. D. (2000). Dominance of Cylindrospermopsis Raciborskii (Nostocales, Cyanoprokar- Yota) in Queensland Tropical and Subtropical Reservoirs: Implications for Monitoring and Management. Lake and Reservoir Management, 5, 195–205.CrossRefGoogle Scholar
  31. McGregor, G. B., Sendall, B. C., Hunt, L. T., & Eaglesham, G. K. (2011). Report of the cyanotoxins cylindrospermopsin and deoxy-cylindrospermopsin from Raphidiopsis mediterranea Skuja (Cyanobacteria/Nostocales). Harmful Algae, 10, 402–410.CrossRefGoogle Scholar
  32. Mehnert, G., Leunert, F., Cires, S., Johnk, K. D., Rucker, J., Nixdorf, B., & Wiedner, C. (2010). Competiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. Journal of Plankton Research, 32, 1009–1021.CrossRefGoogle Scholar
  33. Messineo, V., Melchiorre, S., Di Corcia, A., Gallo, P., & Bruno, M. (2010). Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrance in the volcanic Lake Albano, Central Italy. Environmental Toxicology, 25, 18–27.Google Scholar
  34. Metcalf, J. S., Barakate, A., & Codd, G. A. (2004). Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiology Letters, 235, 125–129.CrossRefGoogle Scholar
  35. Mohamed, Z. A. (2007). First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterrranea (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbiology Ecology, 59, 749–761.CrossRefGoogle Scholar
  36. Nogueira, I. C. G., Saker, M. L., Pflugmacher, S., Wiegand, C., & Vasconcelos, V. M. (2004). Toxicity of the Cyanobacterium Cylindrospermopsis raciborskii to Daphnia magna. Environmental Toxicology, 19, 453–459.CrossRefGoogle Scholar
  37. Orr, P. T., Rasmussen, J. P., Burford, M. A., Eaglesham, G. K., & Lennox, S. M. (2010). Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae, 9, 243–254.CrossRefGoogle Scholar
  38. Padisak, V. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Archives of Hydrobiology, 107, 563–593.Google Scholar
  39. Padisak, J., & Istvanovics, V. (1997). Differential response of blue green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Verh. Int. Verein. Limnology, 26, 574–580.Google Scholar
  40. Puerto, M., Jos, A., Pichardo, S., Gutiérrez-Praena, D., & Cameán, A. M. (2011). Acute effects of pure cylindrospermopsin on the activity and transcription of antioxidant enzymes in tilapia (Oreochromis niloticus) exposed by gavage. Ecotoxicology, 20, 1852–1860.CrossRefGoogle Scholar
  41. Rücker, J., Stüken, A., Nixdorf, B., Fastner, J., Chorus, I., & Wiedner, C. (2007). Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon, 50, 800–809.CrossRefGoogle Scholar
  42. Saker, M. L., & Eaglesham, G. K. (1999). The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish, Cherax quadricarinatus. Toxicon, 37, 1065–1077.CrossRefGoogle Scholar
  43. Saker, M. L., & Griffiths, D. J. (2000). The effect of temperature on growth and cylindrospermopsin content of seven isolates of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju from water bodies in northern Australia. Phycologia, 39, 349–354.CrossRefGoogle Scholar
  44. Saker, M. L., Nogueira, I. C. G., Vasconcelos, V. M., Neilan, B. A., Eaglesham, G. K., & Pereira, P. (2003). First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicology and Environmental Safety, 55, 243–250.CrossRefGoogle Scholar
  45. Seifert, M. (2007). The ecological effects of the cyanobacterial toxin cylindrospermopsin. Ph. D. Thesis, The University of Queensland: Brisbane, Australia.Google Scholar
  46. Shaw, G., Sufenik, A., Livne, A., Chiswel, R. K., Smith, M. J., Seawright, A. A., Norris, K. R., Eaglesham, G., & Moore, M. R. (1999). Blooms of the cylindrospermopsin containing cyanobacterium, Aphanizomenon ovalisporum (Forti) in newly constructed lakes, Queensland Australia. Environmental Toxicology, 14, 167–177.CrossRefGoogle Scholar
  47. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroociccales). Bacteriological Reviews, 35, 171–205.Google Scholar
  48. Svrcek, C., & Smith, D. W. (2004). Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Science, 3, 155–185.CrossRefGoogle Scholar
  49. Talling, J. F., & Driver, O. (1963). Some problems in the estimation of chlorophyll a in phytoplankton. In M. Dotty (Ed.), Primary productivity measurements, marine and freshwater (pp. 142–146). Washington, DC: US Atomic Energy Commission.Google Scholar
  50. Utermohl, H. (1958). Zur Vervollkommung der quantitativen phytoplankton, Methodik.Google Scholar
  51. Van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J. A., & Bakker, G. J. I. (2007). Toxins of cyanobacteria. Molecular Nutrition & Food Research, 51, 7–60.CrossRefGoogle Scholar
  52. Welker, M., Bickel, H., & Fastner, J. (2002). HPLC-PDA detection of cylindrospermopsin – opportunities and limits. Water Research, 36, 4659–4663.CrossRefGoogle Scholar
  53. White, S. H., Duivenvoorden, L. J., Fabbro, L. D., & Eaglesham, G. K. (2006). Influence of intracellular toxin concentrations on cylindrospermopsin bioaccumulation in a freshwater gastropod (Melanoides tuberculata). Toxicon, 47, 497–509.CrossRefGoogle Scholar
  54. White, S. H., Duivenvoorden, L. J., Fabbro, L. D., & Eaglesham, G. K. (2007). Mortality and toxin bioaccumulation in Bufo marinus following exposure to Cylindrospermopsis raciborskii cell extracts and live cultures. Environmental Pollution, 147, 158–167.CrossRefGoogle Scholar
  55. Wormer, L., Cires, A., Carrasco, D., & Quesada, A. (2008). Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae, 7, 206–213.CrossRefGoogle Scholar
  56. Yilmaz, M., Phlip, E. J., Szabo, N. J., & Badylak, S. A. (2008). Comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production. Toxicon, 5, 130–139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zakaria A. Mohamed
    • 1
    Email author
  • Abdulrahman M. Al-Shehri
    • 2
  1. 1.Department of Botany, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Department of Biology, College of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations