Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 815–831 | Cite as

Model-driven development of covariances for spatiotemporal environmental health assessment

  • Alexander Kolovos
  • José Miguel Angulo
  • Konstantinos Modis
  • George Papantonopoulos
  • Jin-Feng Wang
  • George Christakos
Article

Abstract

Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998–1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country.

Keywords

Spatiotemporal Environmental assessment Prediction Covariance models BME 

References

  1. Allen, L. J. S., & Burgin, A. M. (2000). Comparison of deterministic and stochastic SIS and SIR models in discrete time. Mathematical Biosciences, 163, 1–33.CrossRefGoogle Scholar
  2. Angulo, J.M., & Christakos, G. (2010). A stochastic model of spatiotemporal infectious disease spread. SDSU Medical Geography Res Rep 12–09.Google Scholar
  3. Angulo, J.M., Yu, H-L, Langousis, A., Madrid, D., and Christakos, G. (2012). Modeling of space-time infectious disease spread under conditions of uncertainty. International Journal of Geographical Information Science. In press.Google Scholar
  4. Arrow, K., Dasgupta, P., & Maler, K.-G. (2003). Evaluating projects and assessing sustainable development in imperfect economics. Environmental and Resource Economics, 26, 647–85.CrossRefGoogle Scholar
  5. Atkinson, P. M. (1993). The effect of spatial resolution on the experimental variogram of airborne MSS imagery. International Journal of Remote Sensing, 14, 1005–11.CrossRefGoogle Scholar
  6. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data (monographs on statistics and applied probability). Boca Raton: Chapman & Hall/CRC Press.Google Scholar
  7. Bayraktar, H., & Turalioglu, F. S. (2005). A Kriging-based approach for locating a sampling site—in the assessment of air quality. Stochastic Environmental Research and Risk Assessment, 19, 301–5.CrossRefGoogle Scholar
  8. Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied spatial analysis with R. New York: Springer.Google Scholar
  9. Bossak, B. H., & Welford, M. R. (2009). Did medieval trade activity and a viral etiology control the spatial extent and seasonal distribution of Black Death mortality? Medical Hypotheses, 72, 749–752.CrossRefGoogle Scholar
  10. Chen, C.-C., Wu, K.-Y., & Chang, M. J. W. (2004). A statistical assessment on the stochastic relationship between biomarker concentrations and environmental exposures. Stochastic Environmental Research and Risk Assessment, 18, 377–85.CrossRefGoogle Scholar
  11. Choi, K.-M., Serre, M. L., & Christakos, G. (2003). Efficient mapping of California mortality fields at different spatial scales. Journal of Exposure Analysis and Environmental Epidemiology, 13, 120–33.CrossRefGoogle Scholar
  12. Choi, K. M., Yu, H.-L., & Wilson, M. L. (2007). Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001. Stochastic Environmental Research and Risk Assessment, 22(Supplement 1), 15–25.Google Scholar
  13. Christakos, G. (1991a). On certain classes of spatiotemporal random fields with application to space-time data processing. IEEE Trans Systems, Man, and Cybernetics, 21, 861–75.CrossRefGoogle Scholar
  14. Christakos, G. (1991b). Some applications of the BME concept in Geostatistics. In Fundamental Theories of Physics, (pp. 215–229). Amsterdam: Kluwer Acad Publ.Google Scholar
  15. Christakos, G. (1992). Random field models in earth sciences. San Diego: Academic.Google Scholar
  16. Christakos, G. (1998). Spatiotemporal information systems in soil and environmental sciences. Geoderma, 85, 141–79.CrossRefGoogle Scholar
  17. Christakos, G. (2000). Modern spatiotemporal geostatistics. New York: Oxford University Press.Google Scholar
  18. Christakos, G. (2008). Bayesian Maximum Entropy. In M. Kanevski (Ed.), Advanced mapping of environmental data: Geostatistics, machine learning, and Bayesian maximum entropy (pp. 247–306). New York: Wiley.Google Scholar
  19. Christakos, G. (2010). Integrative problem-solving in a time of decadence. New York: Springer.Google Scholar
  20. Christakos, G., & Hristopulos, D. T. (1998). Spatiotemporal environmental health modelling: A Tractatus Stochasticus. Boston: Kluwer Acad Publ.Google Scholar
  21. Christakos, G., & Kolovos, A. (1999). A study of the spatiotemporal health impacts of ozone exposure. Journal of Exposure Analysis and Environmental Epidemiology, 9, 322–335.CrossRefGoogle Scholar
  22. Christakos, G., Bogaert, P., & Serre, M. L. (2002). Temporal GIS. New York: Springer.Google Scholar
  23. Christakos, G., Kolovos, A., Serre, M. L., & Vukovich, F. (2004). Total ozone mapping by integrating data bases from remote sensing instruments and empirical models. IEEE Transactions on Geoscience and Remote Sensing, 42, 991–1008.CrossRefGoogle Scholar
  24. Clayton, D., & Hills, M. (1993). Statistical models in epidemiology. New York: Oxford University Press.Google Scholar
  25. Deutsch, C. V., & Journel, A. G. (1992). Geostatistical Software Library and User's Guide. Oxford: Oxford Univ Press.Google Scholar
  26. Douaik, A., van Meirvenne, M., Toth, T., & Serre, M. L. (2004). Space-time mapping of soil salinity using probabilistic BME. Stochastic Environmental Research and Risk Assessment, 18, 219–27.CrossRefGoogle Scholar
  27. Escudero, L. F., Ortega, E. M., & Alonso, J. (2009). Variability comparisons for some mixture models with stochastic environments in biosciences and engineering. Stochastic Environmental Research and Risk Assessment, 24, 199–209.CrossRefGoogle Scholar
  28. Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. JASA, 97(458), 590–600.Google Scholar
  29. Goovaerts, P. (2008). Kriging and semivariogram deconvolution in the presence of irregular geographical units. Mathematical Geosciences, 40, 101–128.CrossRefGoogle Scholar
  30. Hethcote, H. W. (1994). A thousand and one epidemic models. In S. A. Levin (Ed.), Frontiers in Mathematical Biology, Lecture Notes in Biomathematics (Vol. 100). Berlin: Springer.Google Scholar
  31. Heuvelink, G. B. M. (1998). Error propagation in environmental modelling with GIS. London: Taylor & Francis.Google Scholar
  32. Kolovos, A., Christakos, G., Hristopulos, D. T., & Serre, M. L. (2004). Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Advances in Water Resources, 27, 815–30.CrossRefGoogle Scholar
  33. Kolovos, A., Yu, H.-L., & Christakos, G. (2006). SEKS-GUI v.0.6 User Manual. San Diego: Dept of Geography, San Diego State University.Google Scholar
  34. Kuo, H. I., Lu, C.-L., Tseng, W.-C., & Li, H.-A. (2009). A spatiotemporal statistical model of the risk factors of human cases of H5N1 avian influenza in Southeast Asian countries and China. Journal of Public Health, 123, 188–193.CrossRefGoogle Scholar
  35. Law, D. C. G., Bernstein, K., Serre, M. L., Schumacher, C. M., Leone, P. A., et al. (2006). Modeling an early syphilis outbreak through space and time using the Bayesian maximum entropy approach. Annals of Epidemiology, 16, 797–804.CrossRefGoogle Scholar
  36. Lee, S.-J., Balling, R., & Gober, P. (2008). Bayesian maximum entropy mapping and the soft data problem in urban climate research. Annals of the Association of American Geographers, 98, 309–22.CrossRefGoogle Scholar
  37. Liao, D., Peuquet, D. J., Duan, Y., Whitsel, E. A., Dou, J., et al. (2006). GIS approaches for the estimation of residential-level ambient PM concentrations. Environmental Health Perspectives, 114, 1374–80.CrossRefGoogle Scholar
  38. Ma, C. (2008). Recent developments on the construction of spatio-temporal covariance models. Stochastic Environmental Research and Risk Assessment, 22, 39–47.CrossRefGoogle Scholar
  39. Moore, D. A., & Carpenter, T. E. (1999). Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiology Reviews, 21, 143–61.CrossRefGoogle Scholar
  40. Porcu, E., Mateu, J., & Saura, F. (2008). New classes of covariance and spectral density functions for spatio-temporal modelling. Stochastic Environmental Research and Risk Assessment, 22, 65–79.CrossRefGoogle Scholar
  41. Renshaw, E. (1993). Modelling biological populations in space and time. Cambridge: Cambridge University.Google Scholar
  42. Saito, H., McKenna, S. A., Zimmerman, D. A., & Coburn, T. C. (2005). Geostatistical interpolation of object counts collected from multiple strip transects: Ordinary Kriging versus finite domain Kriging. Stochastic Environmental Research and Risk Assessment, 19, 71–85.CrossRefGoogle Scholar
  43. Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Boca Raton: Chapman & Hall/CRC Press.Google Scholar
  44. Serre, M. L., & Christakos, G. (1999). Modern geostatistics: Computational BME analysis in the light of uncertain physical knowledge—the Equus Beds study. Stochastic Environmental Research and Risk Assessment, 13, 1–26.CrossRefGoogle Scholar
  45. Serre, M. L., Kolovos, A., Christakos, G., & Modis, K. (2003). An application of the holistochastic human exposure methodology to naturally occuring Arsenic in Bangladesh drinking water. Risk Analysis, 23, 515–28.CrossRefGoogle Scholar
  46. Stein, A., van der Meer, F., & Gorte, B. (1999). Spatial statistics for remote sensing. Dordrecht: Kluwer.Google Scholar
  47. Wong, D. W. S., & Lee, J. (2005). Statistical analysis of geographic information with ArcView GIS and ArcGIS. New York: Wiley.Google Scholar
  48. Wu, J. L., Wang, J. F., Meng, B., Chen, G., Pang, L., et al. (2004). Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health, 4, 23.CrossRefGoogle Scholar
  49. Yu, H.-L., Ku, S.-C., Yang, C.-H., Cheng, T.-J., & Chen, L. (2011). Assessment of areal average air quality level over irregular areas: A case study of PM10 exposure estimation in Taipei (Taiwan). In: F. Nejadkoorki (Ed.), Advanced Air Pollution. InTech, http://www.intechopen.com/articles/show/title/assessment-of-areal-average-air-quality-level-over-irregular-areas-a-case-study-of-pm10-exposure-est

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexander Kolovos
    • 1
  • José Miguel Angulo
    • 2
  • Konstantinos Modis
    • 3
  • George Papantonopoulos
    • 3
  • Jin-Feng Wang
    • 4
  • George Christakos
    • 5
  1. 1.SpaceTimeWorks, LLCSan DiegoUSA
  2. 2.Departamento de Estadistica e Investigación OperativaUniversidad de GranadaGranadaSpain
  3. 3.School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece
  4. 4.LREIS, Institute of Geographical Sciences & Natural Resources ResearchChinese Academy of SciencesBeijingChina
  5. 5.Department of GeographySan Diego State UniversitySan DiegoUSA

Personalised recommendations