Environmental Monitoring and Assessment

, Volume 185, Issue 1, pp 73–80 | Cite as

Modeling the plant–soil interaction in presence of heavy metal pollution and acidity variations

  • Sebastián Guala
  • Flora A. Vega
  • Emma F. Covelo


On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.


Soil pollution Heavy metals Modeling Soil acidity 



This study was supported by the Xunta de Galicia in partnership with the University of Vigo through a Parga Pondal and Ángeles Alvariño contract awarded to E.F. Covelo and F.A. Vega, respectively.


  1. Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.Google Scholar
  2. Aggarwal, H., & Goyal, D. (2007). Phytoremediation of some heavy metals by agronomic crops. In D. Sarkar, R. Datta, & R. Hannigan (Eds.), Developments in environmental science, Volume 5. Amsterdam: Elsevier.Google Scholar
  3. Alloway, B. J. (1995). Heavy metals in soils. Glasgow: Blackie Academic and Professional.CrossRefGoogle Scholar
  4. Appel, C., & Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31(2), 581–589.CrossRefGoogle Scholar
  5. Athar, R., & Ahmad, M. (2002). Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water, Air, and Soil Pollution, 138(1–4), 165–180.CrossRefGoogle Scholar
  6. Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.CrossRefGoogle Scholar
  7. Brun, L. A., Maillet, J., Hinsinger, P., & Pepin, M. (2001). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.CrossRefGoogle Scholar
  8. Chaney, R. L. (1983). Plant uptake of inorganic waste constitutes. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge: Noyes Data Corp.Google Scholar
  9. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.CrossRefGoogle Scholar
  10. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36(5), 1429–1433.CrossRefGoogle Scholar
  11. Cieśliński, G., Neilsen, G. H., & Hogue, E. J. (1996). Effect of soil cadmium application and pH on growth and cadmium accumulation in roots, leaves and fruit of strawberry plants (Fragaria × ananassa Duch.). Plant and Soil, 180(2), 267–276.CrossRefGoogle Scholar
  12. Dan, T., Hale, B., Johnson, D., Conard, B., Stiebel, B., & Veska, E. (2008). Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Canadian Journal of Soil Science, 88, 389–398.CrossRefGoogle Scholar
  13. Deleo, G., Delfuria, L., & Gatto, M. (1993). The interaction between soil acidity and forest dynamics: A simple model exhibiting catastrophic behaviour. Theoretical Population Biology, 43(1), 31–51.CrossRefGoogle Scholar
  14. Doelman, P., & Haanstra, L. (1984). Short-term and longterm effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant and Soil, 79(33), 317–327.CrossRefGoogle Scholar
  15. Esteban, E., Moreno, E., Peñalosa, J., Cabrero, J. I., Millán, R., & Zornoza, P. (2008). Short and long-term uptake of Hg in white lupin plants: Kinetics and stress indicators. Environmental and Experimental Botany, 62(3), 316–322.CrossRefGoogle Scholar
  16. Friesl, W., Friedl, J., Platzer, K., Horak, O., & Gerzabek, M. H. (2006). Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environmental Pollution, 144, 40–50.CrossRefGoogle Scholar
  17. Garbisu, C., Hernández-Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17(3), 173–188.CrossRefGoogle Scholar
  18. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30(10–11), 1389–1414.CrossRefGoogle Scholar
  19. Gincchio, R., Rodriguez, P. H., Badilla-Ohlbaum, R., Allen, H. E., & Lagos, G. E. (2002). Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environmental Toxicology and Chemistry, 21, 1736–1744.CrossRefGoogle Scholar
  20. Guala, S. D., Vega, F. A., & Covelo, E. F. (2009). Modification of a soil-vegetation nonlinear interaction model with acid deposition for simplified experimental applicability. Ecological Modelling, 220, 2137–2141.CrossRefGoogle Scholar
  21. Guala, S. D., Vega, F. A., & Covelo, E. F. (2010a). Dynamical of heavy metals in plant-soil interaction. Ecological Modelling, 221, 1148–1152.CrossRefGoogle Scholar
  22. Guala, S. D., Vega, F. A., & Covelo, E. F. (2010b). Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model. Environmental Pollution, 158, 2659–2663.CrossRefGoogle Scholar
  23. Guala, S.D., Vega, F.A., Covelo, E.F. (2011). Development of a model to select plants with optimum metal phytoextraction potential, submitted to Environmental Science and Pollution Research.Google Scholar
  24. Hamon, R. E., Holm, P. E., Lorenz, S. E., McGrath, S. P., & Christensen, T. H. (1999). Metal uptake by plants from sludge-amended soils: Caution is required in the plateau interpretation. Plant and Soil, 216(1–2), 53–64.CrossRefGoogle Scholar
  25. Heidari, R., Khayanni, M., & Farboodnia, T. (2005). Effect of ph and EDTA on Pb accumulation in Zea mays seedlings. Journal of Agronomy, 4(1), 49–54.CrossRefGoogle Scholar
  26. Kabata-Pendias, A. (2001). Trace elements in soils and plants. Boca Raton: CRC Press.Google Scholar
  27. Kukier, U., Peters, C. A., Chaney, R. L., Scott Angle, J., & Roseberg, R. J. (2004). The effect of pH on metal accumulation in two Alyssum species. Journal of Environmental Quality, 33(6), 2090–2102.CrossRefGoogle Scholar
  28. Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.CrossRefGoogle Scholar
  29. Lindsay, W. (1979). Chemical equilibria in soils. New York: Wiley.Google Scholar
  30. Lombi, E., Scheckel, K. G., Pallon, J., Carey, A. M., Zhu, Y. G., & Meharg, A. A. (1999). Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist, 184(1), 193–201.CrossRefGoogle Scholar
  31. MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65–84.CrossRefGoogle Scholar
  32. McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. Brooks (Ed.), Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–287). New York: CAB International.Google Scholar
  33. Moreira, C. S., Casagrande, J. C., Alleoni, L. R. F., De Camargo, O. A., & Berton, R. S. (2008). Nickel adsorption in two Oxisols and an Alfisol as affected by pH, nature of the electrolyte, and ionic strength of soil solution. Journal of Soils and Sediments, 8(6), 442–451.CrossRefGoogle Scholar
  34. Moreno, J. L., Sanchez-Marín, A., Hernández, T., & García, C. (2006). Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils. Environmental Management, 37(5), 626–633.CrossRefGoogle Scholar
  35. Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 48(4), 573–592.CrossRefGoogle Scholar
  36. Panuccio, M. R., Sorgonà, A., Rizzo, M., & Cacco, G. (2009). Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. Journal of Environmental Management, 90(1), 364–374.CrossRefGoogle Scholar
  37. Peijnenburg, W. J. G. M., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77.CrossRefGoogle Scholar
  38. Poulik, Z. (1997). The danger of cumulation of nickel in cereals on contaminated soil. Agriculture, Ecosystems and Environment, 63(1), 25–29.CrossRefGoogle Scholar
  39. Reed, R. L., Sanderson, M. A., Allen, V. G., & Zartman, R. E. (2002). Cadmium application and pH effects on growth and cadmium accumulation in switchgrass. Communications in Soil Science and Plant Analysis, 33(7 & 8), 1187–1203.CrossRefGoogle Scholar
  40. Ryser, P., & Sauder, W. R. (2006). Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Environmental Pollution, 140(1), 52–61.CrossRefGoogle Scholar
  41. Speir, T. W., Kettles, H. A., Parshotam, A., Searle, P. L., & Vlaar, L. N. C. (1995). A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties. Soil Biology and Biochemistry, 27, 801–810.CrossRefGoogle Scholar
  42. Strawn, D. G., & Sparks, D. L. (1999). Sorption kinetics of trace elements in soils and soil materials. In H. M. Selim & I. K. Iskandar (Eds.), The Fate and Transport of Trace Metals in the Vadose Zone. Boca Raton: Lewis Publishers.Google Scholar
  43. Ulrich, B., & Pankrath, J. (1983). Effects of accumulation of air pollutants in forest ecosystems. Dordrecht: Reidel.CrossRefGoogle Scholar
  44. Ulrich, B., Mayer, R., & Khanna, P. K. (1980). Chemical changes due to acid precipitation in a loess derived soil in Central Europe. Soil Science, 130(4), 193–199.CrossRefGoogle Scholar
  45. Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13, 195–206.CrossRefGoogle Scholar
  46. Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.CrossRefGoogle Scholar
  47. Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Chromium reduction, plant growth-promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Current Microbiology, 54, 237–243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sebastián Guala
    • 2
  • Flora A. Vega
    • 1
  • Emma F. Covelo
    • 1
  1. 1.Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de BioloxiaUniversidade de VigoVigoSpain
  2. 2.Universidad Nacional de General SarmientoLos PolvorinesArgentina

Personalised recommendations