Environmental Monitoring and Assessment

, Volume 184, Issue 12, pp 7635–7652 | Cite as

A comparative chemometric study for water quality expertise of the Athenian water reservoirs

  • Eleni G. Farmaki
  • Nikolaos S. Thomaidis
  • Vasil Simeonov
  • Constantinos E. Efstathiou
Article

Abstract

The aim of the present study is to compare the application of unsupervised and supervised pattern recognition techniques for the quality assessment and classification of the reservoirs used as the source for the domestic and industrial water supply of the city of Athens, Greece. A new optimization strategy for sampling, monitoring, and water management is proposed. During the period of October 2006 to April 2007, 89 samples were collected from the three water reservoirs (Iliki, Mornos, and Marathon), and 13 parameters (metals and metalloids) were analytically determined. Generally, all the elements were found to fluctuate at very low levels, especially for Mornos that comprises the main water reservoir of Athens. Iliki and Marathon showed relatively elevated values, compared to Mornos, but below the legislative limits. Multivariate unsupervised statistical techniques, such as factor analysis/principal components analysis, and cluster analysis and supervised ones, like discriminant analysis and classification trees, were applied to the data set, and their classification abilities were compared. All the chemometric techniques successfully revealed the critical variables and described the similarities and dissimilarities among the sampling points, emphasizing the individual characteristics in every sample and revealing the sources of elements in the region. New data from posterior samplings (November and December 2007) were used for the validation of the supervised techniques. Finally, water management strategies were proposed concerning the sampling points and representative parameters.

Keywords

Chemometrics Classification Modeling Sampling site reduction Water quality Water management 

Supplementary material

10661_2012_2524_MOESM1_ESM.doc (276 kb)
ESM 1(DOC 275 kb)

References

  1. Adams, M. J. (1995). Chemometrics in analytical spectroscopy. RSC, Cambridge: Analytical Spectroscopy Monographs.Google Scholar
  2. An, Y. J., & Kampbell, D. H. (2003). Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environmental Pollution, 122, 253–259.CrossRefGoogle Scholar
  3. Astel, A., Tsakovski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Research, 41, 4566–4578.CrossRefGoogle Scholar
  4. Brodnjak-Voncina, D., Dobcnik, D., Novic, M., & Zupan, J. (2002). Chemometrics characterisation of the quality of river water. Analytica Chimica Acta, 462, 87–100.CrossRefGoogle Scholar
  5. Chen, K., Jiao, J. J., Huang, J., & Huang, R. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen. China. Environ. Pollut., 147, 771–780.CrossRefGoogle Scholar
  6. Dale, M. B., Dale, P. E. R., & Tan, P. (2007). Supervised clustering using decision trees and decision graphs: An ecological comparison. Ecol Modell, 204, 70–78.CrossRefGoogle Scholar
  7. Debeljak, M., Džeroski, S., Jerina, K., Kobler, A., & Adamič, M. (2001). Habitat suitability modelling for red deer (Cervus elaphus L.) in south-central Slovenia with classification trees. Ecological Modelling, 138, 321–330.CrossRefGoogle Scholar
  8. Dillner, A. M., Schauer, J. J., Christensen, W. F., & Cass, G. R. (2005). A quantitative method for clustering size distributions of elements. Atmospheric Environment, 39, 1525–1537.CrossRefGoogle Scholar
  9. Dong, D., Wu, Q., Zhang, R., Song, Y., Chen, S., Li, P., Liu, S., Bi, C., Lv, Z., & Huang, S. (2007). Environmental characteristics of groundwater: An application of PCA to water chemistry analysis in Yulin. Journal of China University of Mining & Technology, 17, 73–77.CrossRefGoogle Scholar
  10. EC. (1998). Directive of the European Parliament and of the council 98/83/EC of 11 November 1998 on the quality of water for human consumption. Off J Eur Commun, L330, 32–54.Google Scholar
  11. EC. (2000). Directive of the European Parliament and of the council 2000/60/EC of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun, L327, 1–72.Google Scholar
  12. Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodged, V. F., & Stetzenbach, K. J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta, 490, 123–138.CrossRefGoogle Scholar
  13. Giokas, D. L., Paleologos, E. V., & Karayannis, M. I. (2005). Optimization of a multi-elemental preconcentration procedure for the monitoring survey of dissolved metal species in natural waters. Analytica Chimica Acta, 537, 249–257.CrossRefGoogle Scholar
  14. Güler, C. (2004). Characterization of Turkish bottled waters using pattern recognition methods. Chemometr. Intell. Lab. Syst., 86, 86–94.CrossRefGoogle Scholar
  15. Hernández-Caraballo, A., Rivas, F., Pérez, A. G., & Marcó-Parra, L. M. (2005). Evaluation of chemometric techniques and artificial neural networks for cancer screening using Cu, Fe, Se and Zn concentrations in blood serum. Analytica Chimica Acta, 533, 161–168.CrossRefGoogle Scholar
  16. Ho, K. F., Cao, J. J., Lee, S. C., & Chan, C. K. (2006). Source apportionment of PM2.5 in urban area of Hong Kong. Journal of Hazardous Materials, 138, 73–85.CrossRefGoogle Scholar
  17. Kutlu, Y., Kuntalp, M., & Kuntalp, D. (2009). Optimizing the performance of an MLP classifier for the automatic detection of epileptic spikes. Expert Systems with Applications, 36, 7567–7575.CrossRefGoogle Scholar
  18. Loh, W. Y., & Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815–840.Google Scholar
  19. Lourenco, N. D., Chaves, C. L., Novais, J. M., Menezes, J. C., Pinheiro, H. M., & Diniz, D. (2006). UV spectra analysis for water quality monitoring in a fuel park wastewater treatment plant. Chemosphere, 65, 786–791.CrossRefGoogle Scholar
  20. Lundstedt-Enkel, K., Asplund, L., Nylund, K., Bignert, A., Tysklind, M., Olsson, M., & Orberg, J. (2006). Multivariate data analysis of organochlorines and brominated flame retardants in Baltic Sea guillemot (Uria aalge) egg and muscle. Chemosphere, 65, 1591–1599.CrossRefGoogle Scholar
  21. Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1988). Chemometrics: a textbook. Amsterdam: Elsevier.Google Scholar
  22. Mendiguchia, C., Moreno, C., Galindo-Riano, M. D., & Garcia-Vargas, M. (2004). Using chemometric tools to assess anthropogenic effects in river water: A case study: Guadalquivir River (Spain). Analytica Chimica Acta, 515, 143–149.CrossRefGoogle Scholar
  23. Merian, E. (1991). Metals and their compounds in the environment. Weinheim: VCH.Google Scholar
  24. Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Essex: Pearson.Google Scholar
  25. Ocampo-Duque, W., Schuhmacher, M., & Domingo, J. L. (2007). A neural-fuzzy approach to classify the ecological status in surface waters. Environmental Pollution, 148, 634–641.CrossRefGoogle Scholar
  26. Pantsar-Kallio, M., Mujunen, S., Hatzimihalis, G., Koutoufides, P., Minkkinen, P., Wilkie, P. J., & Connor, M. A. (1999). Multivariate data analysis of key pollutants in sewage samples: A case study. Analytica Chimica Acta, 393, 181–191.CrossRefGoogle Scholar
  27. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Modell. Softw., 22, 464–475.CrossRefGoogle Scholar
  28. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, Th. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.CrossRefGoogle Scholar
  29. Simeonova, P., & Simeonov, V. (2007). Chemometrics to evaluate the quality of water sources for human consumption. Microchim. Acta, 156, 315–320.Google Scholar
  30. Singh, K. P., Malik, A., & Sinha, S. (2005a). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Analytica Chimica Acta, 538, 355–374.CrossRefGoogle Scholar
  31. Singh, K. P., Malik, A., Mohan, D., Sinha, S., & Sihgh, V. K. (2005b). Chemometric data analysis of pollutants in wastewater—a case study. Analytica Chimica Acta, 532, 15–25.CrossRefGoogle Scholar
  32. Singh, K. P., Malik, A., Singh, V. K., Mohan, D., & Sinha, S. (2005c). Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, 550, 82–91.CrossRefGoogle Scholar
  33. Singh, K. P., Malik, A., Singh, V. K., & Sinha, S. (2006). Multi-way data analysis of soils irrigated with wastewater–A case study. Chemometr. Intell. Lab. Syst., 83, 1–12.CrossRefGoogle Scholar
  34. Smeti, E. M., Thanasoulias, N. C., Lytras, E. S., Tzoumerkas, P. C., & Golfinopoulos, S. K. (2009). Treated water quality assurance and description of distribution networks by multivariate chemometrics. Water Research, 43, 4676–4684.CrossRefGoogle Scholar
  35. Stanimirova, I., Kubik, A., Walczak, B., & Einax, J. W. (2008). Discrimination of biofilm samples using pattern recognition techniques. Analytical and Bioanalytical Chemistry, 390, 1273–1282.CrossRefGoogle Scholar
  36. Stanimirova, I., Walczak, B., & Massart, D. L. (2005). Multiple factor analysis in environmental chemistry. Analytica Chimica Acta, 545, 1–12.CrossRefGoogle Scholar
  37. StatSoft Inc. (2004) STATISTICA software, version 7.0, StatSoft Inc.Google Scholar
  38. Terrado, M., Barcelo, D., & Tauler, R. (2006). Identification and distribution of contamination sources in the Ebro river basin by chemometrics modelling coupled to geographical information systems. Talanta, 70, 691–704.CrossRefGoogle Scholar
  39. Thanasoulias, N. C., Piliouris, E. T., Kotti, M. S. E., & Evmiridis, N. P. (2002). Application of multivariate chemometrics in forensic soil discrimination based on the UV–vis spectrum of the acid fraction of humus. Forensic Science International, 130, 73–82.CrossRefGoogle Scholar
  40. Thomaidis, N. S., Bakeas, E. B., & Siskos, P. A. (2003). Characterization of lead, cadmium, arsenic and nickel in PM2:5 particles in the Athens atmosphere, Greece. Chemosphere, 52, 959–966.CrossRefGoogle Scholar
  41. Wang, Y., Yang, R., & Jiang, G. (2007). Investigation of organochlorine pesticides (OCPs) in mollusks collected from coastal sites along the Chinese Bohai Sea from 2002 to 2004. Environmental Pollution, 146, 100–106.CrossRefGoogle Scholar
  42. Webb, A. R. (2002). Statistical pattern recognition (2nd ed.). Chichester: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Eleni G. Farmaki
    • 1
    • 2
  • Nikolaos S. Thomaidis
    • 1
  • Vasil Simeonov
    • 3
  • Constantinos E. Efstathiou
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  2. 2.Quality Control DivisionAthens Water Supply and Sewerage Company (EYDAP SA)AcharnesGreece
  3. 3.Faculty of ChemistryUniversity of Sofia “St. Kl. Okhridski”SofiaBulgaria

Personalised recommendations