Environmental Monitoring and Assessment

, Volume 184, Issue 11, pp 6593–6606 | Cite as

Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy

  • K. Farrag
  • N. Senesi
  • P. Soler Rovira
  • G. Brunetti


Phytoremediation is a well-known promising alternative to conventional approaches used for the remediation of diffused and moderated contaminated soils. The evaluation of the accumulation, availability, and interactions of heavy metals in soil is a priority objective for the possible use of phytoremediation techniques such as phytoextraction and phytostabilization. The soils used in this work were collected from a number of sites inside a protected area in the Apulia region (Southern Italy), which were contaminated by various heavy metals originated from the disposal of wastes of different sources of origin. Soils examined contained Cd, Cr, Cu, Ni, Pb, and Zn in amounts exceeding the critical limits imposed by EU and Italian laws. However, the alkaline conditions, high organic matter content, and silty to silty loamy texture of soils examined would suggest a reduced availability of heavy metals to plants. Due to the high total content but the low available fraction of heavy metals analyzed, especially Cr, phytoextraction appears not to be a promising remediation approach in the sites examined, whereas phytostabilization appears to be the best technique for metal decontamination in the studied areas.


Waste disposal Contaminated soils Heavy metals Phytoremediation 


  1. Alloway, B. J. (1995). Heavy Metals in Soils. Glasgow: Blackie Academic and Professional.Google Scholar
  2. Altamura (2005). Relazione Tecnica Finale del progetto di bonifica di un, area della “Alta Murgia” Alla Località cervone. Regione Puglia. D.M.A. 25 ottobre 1999 n. 471. (In Italian).Google Scholar
  3. Amit, K. G., & Sarita, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64, 61–173.Google Scholar
  4. Baath, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.CrossRefGoogle Scholar
  5. Babich, H., & Stotzky, G. (1977). Sensitivity of various bacteria including actinomycetes and fungi to cadmium and the influence of pH on sensitivity. Applied and Environmental Microbiology, 33(3), 681–659.Google Scholar
  6. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  7. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In N. Terry et al. (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Boca Raton: Lewis Publishers.Google Scholar
  8. Berti, W. R., & Jacobs, L. W. (1996). Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications. Journal of Environmental Quality, 25, 1025–1032.CrossRefGoogle Scholar
  9. Brunetti, G., Soler-Rovira, P., Farrag, K., & Senesi, N. (2009a). Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant and Soil, 318, 285–298. doi:10.1007/s11104-008-9838-3.CrossRefGoogle Scholar
  10. Brunetti, G., Farrag, K., & Senesi, N. (2009b). Time frame and effectiveness of phytoremediation for heavy metal decontamination of soils in the Apulia region, southern Italy. In: N. Senesi and W. Bergheim (Ed.), Book of Abstract of the 15th International Symposium MESAEP 2009 “Environmental Pollution and its Impact on Life in the Mediterranean Region” (p. 56). 7:11.10.2009, Bari—Italy. ISBN 978-3-936175-12-7.Google Scholar
  11. Brunetti, G., Farrag, K., Soler-Rovira, P., Nigro, F., & Senesi, N. (2011a). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160, 517–523. doi:10.1016/j.geoderma.2010.10.023.CrossRefGoogle Scholar
  12. Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2011b). Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field condition. Journal of plant interactions. doi:10.1080/17429145.2011.603438.
  13. Cataldo, D., Garland, T., & Wildung, R. (1981). Cadmium distribution and chemical fate in soybean plants. Plant Physiology, 68, 835–839.CrossRefGoogle Scholar
  14. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.CrossRefGoogle Scholar
  15. Chen, X., Wright, J., Conca, J., & Peurrung, L. (1997). Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology, 31(3), 624–631.CrossRefGoogle Scholar
  16. Commission of the European Communities. (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities Directive, 181(No. L), 6–12.Google Scholar
  17. Cui, Y., Wang, Q., & Christie, P. (2004). Effect of elemental sulphur on the uptake of cadmium, zinc and sulphur by oilseed rape growing on soil contaminated with zinc and cadmium. Communications in Soil Science and Plant Analysis, 35(19/20), 2905–2916.CrossRefGoogle Scholar
  18. Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 134, 393–397.CrossRefGoogle Scholar
  19. Doner, H. E. (1978). Chloride as a factor in mobilities of Ni(II), Cu(II), and Cd(II) in soil. Soil Science Society of America Journal, 42, 882–885.CrossRefGoogle Scholar
  20. Elliott, H. A., Liberati, M. R., & Hvang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.CrossRefGoogle Scholar
  21. Emmanuel, D., Virginie, V. K., & Hervé, S. M. (2006). Heavy metal content in soils of Réunion (Indian Ocean). Geoderma, 134, 119–134.CrossRefGoogle Scholar
  22. Farrag, K., Brunetti, G., & Senesi, N. (2009). Potential of Brassica napus for the phytoremediation of heavy metals contaminated soils in Apulia region, southern Italy. In: N. Senesi and W. Bergheim (Ed.), Book of Abstract of the 15th International Symposium MESAEP 2009 “Environmental Pollution and its Impact on Life in the Mediterranean Region” (p. 56). 7:11.10.2009, Bari-Italy. ISBN 978-3-936175-12-7.Google Scholar
  23. Farrag, K., Brunetti, G., Soler-Rovira, P., & Nigro, F. (2010) Phytoremediation of a soil polluted with multiple heavy metals using MSW compost as organic carbon source. In: J.A. González-Pérez, F.J. González-Vila, G. Almendros (Ed.), Proceedings Book of the Communications presented to the 15th Meeting of the International Humic Substances Society “Advances In Natural Organic Matter And Humic Substances Research 2008-2010” (Vol 3, pp 213–216). June 27–July 2, 2010, Tenerife—Canary Islands, Spain,Google Scholar
  24. Gravina (2005) Relazione Tecnica Finale del Piano di Caratterizzazione Ambientale ai sensi del DM 471/99 dell’area denominata Gravina in Puglia a stralcio del Piano di Caratterizzazione del sito “Alta Murgia in Puglia”. Regione Puglia, Doc. n. (001./01), p. 1:143. (In Italian).Google Scholar
  25. He, Q. B., & Singh, B. R. (1993). Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Journal of Soil Science, 44, 641–650.CrossRefGoogle Scholar
  26. Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., & Yan, C. Y. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67, 2148–2155.CrossRefGoogle Scholar
  27. Italy (1999). Ministero per le Politiche Agricole, Metodi ufficiali di analisi chimica del suolo. Decreto Ministeriale del 13 Settembre1999. Gazzetta Ufficciale n 248 del 21.10.1999. (In Italian).Google Scholar
  28. Italy (2006). Ministerio dell’Ambiente, Norme in materia ambientale. Decreto Legislativo 3 Aprile 2006, n 152. Gazzetta Ufficiale n 88 del 14.04.2006. (In Italian).Google Scholar
  29. Jahiruddin, M., Livesey, N. T., & Cresser, M. S. (1985). Observations on the effect of soil pH upon zinc absorption by soils. Communications in Soil Science and Plant Analysis, 16, 909–922.CrossRefGoogle Scholar
  30. John, M. K., & VanLaerhoven, C. J. (1972). Lead distribution in plants grown on a contaminated soil. Environmental Letters, 3(2), 111–116.CrossRefGoogle Scholar
  31. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: FL7 CRC Press.Google Scholar
  32. Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science and Technology, 34, 1778–1783.CrossRefGoogle Scholar
  33. Koopmans, G. F., Römkens, P. F. A. M., Song, J., Temminghoff, E. J. M., & Japenga, J. (2007). Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water, Air, and Soil Pollution, 181, 355–371. doi:10.1007/s11270-006-9307-7.CrossRefGoogle Scholar
  34. Larlson, J., Likens, G., Fitzpatrick, J., & Crock, J. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406, 181–183.CrossRefGoogle Scholar
  35. Lee, B. D., Carter, B. J., Basta, N. T., & Weaver, B. (1997). Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61, 218–223.CrossRefGoogle Scholar
  36. Li, L., & Wu, G. (1999). Numerical simulation of transport of four heavy metals in kaolinite clay. Journal of Environmental Engineering, 125(4), 314–324.CrossRefGoogle Scholar
  37. Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.CrossRefGoogle Scholar
  38. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.CrossRefGoogle Scholar
  39. McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207–214.CrossRefGoogle Scholar
  40. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids and radionuclides. Advances in Agronomy, 75, 1–56.CrossRefGoogle Scholar
  41. Mench, M., Vangronsveld, J., Didier, V., & Clijsters, H. (1994). Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil. Environmental Pollution, 86, 279–286.CrossRefGoogle Scholar
  42. Mininni, M. (1996). Risorse ambientali. In G. Grittani (Ed.), Un approccio metodologico alla pianificazione di area vasta (pp. 35–86). Milano: Ed. Franco Angeli.Google Scholar
  43. Ochiai, E. (1995). Toxicity of heavy metals and biological defense. Journal of Chemical Education, 72(6), 479–484.CrossRefGoogle Scholar
  44. Peles, J., Brewer, S., & Barrett, G. (1998). Heavy metal accumulation by old-field plant species during recovery of sludge-treated ecosystems. American Midland Naturalist, 140(2), 245–251.CrossRefGoogle Scholar
  45. Pérez-de-Mora, A., Madejón, E., Burgos, P., & Cabrera, F. (2006). Trace element availability and plant growth in a minespill-contaminated soil under assisted natural remediation II. Plants. Science of the Total Environment, 363, 38–45.CrossRefGoogle Scholar
  46. Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.CrossRefGoogle Scholar
  47. Robinson, B., Fernández, J. E., Madejón, P., Marañón, T., Murillo, J. M., Green, S., & Clothier, B. (2003). Phytoextraction: An assessment of biogeochemical and economic viability. Plant and Soil, 249, 117–125.CrossRefGoogle Scholar
  48. Ross, S. M. (1994). Retention, transformation and mobility of toxic metals in soils. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 63–152). New York: Wiley.Google Scholar
  49. Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.CrossRefGoogle Scholar
  50. Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28, 1442–1447.CrossRefGoogle Scholar
  51. Sims, J. T., & Kline, J. S. (1991). Chemical fractionations and plant uptake of heavy metals in soils amended with co-composted sewage sludge. Journal of Environmental Quality, 20, 387–395.CrossRefGoogle Scholar
  52. Sloan, J. J., Dowdy, R. H., Dolan, M. S., & Linden, D. R. (1997). Long-term effects of biosolids applications on heavy metal bioavailability in agricultural soils. Journal of Environmental Quality, 26, 966–974.CrossRefGoogle Scholar
  53. Walter, I., & Cuevas, G. (1999). Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. Science of the Total Environment, 226(2–3), 113–119.CrossRefGoogle Scholar
  54. Walter, I., Martínez, F., Alonso, L., De Gracia, J., & Cuevas, G. (2001). Extractable soil heavy metals following the cessation of biosolids application to agricultural soil. Environmental Pollution, 117, 315–321.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. Farrag
    • 1
  • N. Senesi
    • 2
  • P. Soler Rovira
    • 3
  • G. Brunetti
    • 2
  1. 1.Central Lab for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC)Ministry of Water Resources and Irrigation (MWRI)CityEgypt
  2. 2.Dipartimento di Biologia e Chimica Agroforestale e AmbientaleUniversità di BariBariItaly
  3. 3.Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, C.S.I.C.MadridSpain

Personalised recommendations