Environmental Monitoring and Assessment

, Volume 184, Issue 11, pp 6541–6552 | Cite as

Tidally driven N, P, Fe and Mn exchanges in salt marsh sediments of Tagus estuary (SW Europe)

  • M. CaetanoEmail author
  • P. Bernárdez
  • J. Santos-Echeandia
  • R. Prego
  • C. Vale


Short-sediment cores and flooding water were collected at 0, 5, 15, 25 and 50 min of tidal inundation in the two sites colonised by pure stands of Spartina maritima (low marsh) and Sarcocornia fruticosa (high marsh) from the Rosário salt marsh (Tagus estuary, SW Europe). Concentrations of NH 4 + , NO 3  + NO 2 and HPO 4 2− , Fe and Mn were measured in tidal flooding water and pore water. Flooding water is enriched in nutrients, particularly ammonium due to local discharge of untreated urban effluents. Nevertheless, NH 4 + and NO 3  + NO 2 concentrations in flooding waters at t = 5 min (NH 4 +  = 246 ± 7 μM, NO 3  + NO 2  = 138 ± 1 μM for S. fruticosa and NH 4 +  = 256 ± 8 μM, NO 3  + NO 2  = 138 ± 1 μM for S. maritima) rose sharply at both vegetated sites. An increase was also registered for HPO 4 2− and total dissolved Fe although the subsequent decrease was smoother. Advective transport induced by the two daily pulses of inundation is several orders of magnitude higher than the diffusive fluxes during submerged periods. In addition, solutes are exported from the sediment with the inundation and imported in submerged periods. The exported amount of inorganic nitrogen during tidal inundation (export of 3,200 μmol N m−2 day−1to the water column), is not counterbalanced by the sink of −290 μmol N m−2 day−1 occurred during the submerged period.


Salt marsh Metals Nutrients Advective transport Diffusive fluxes 



The authors wish to thank the colleague Rute Cesário for the field work and technical assistance and Joana Raimundo for statistical analysis. Juan Santos-Echeandia thanks the Basque Government for the financial support (post-doctoral grant). This article is a contribution to the Spanish–Portuguese Actions of references 2007PT0021 and FCT/CSIC9/CSIC/08.


  1. Allaway, W., Curran, M., Hollington, L., Ricketts, M., & Skelton, N. (2001). Gas space and oxygen exchange in roots of Avicennia marina (Forrsk.) Vierh. var. australasica (Walp.) ex N.C. Duke, the Grey Mangrove. Wetlands Ecology and Management, 9, 211–2001.CrossRefGoogle Scholar
  2. Aller, R. (1980). Diagenetic processes near the sediment-water interface of Long Island Sound. I Decomposition and nutrient element geochemistry (S, N, P). Advances in Geophysics, 22, 237–250.CrossRefGoogle Scholar
  3. Aller, R. (1994). The sedimentary Mn cycle in Long Island Sound, its role as intermediate oxidant and the influence of bioturbation, O2 and Corg flux on diagenetic reaction balances. Journal of Marine Research, 52, 259–295.CrossRefGoogle Scholar
  4. Andersen, F., & Ring, P. (1999). Comparison of phosphorus release from littoral and profundal sediments in a shallow eutrophic lake. Hydrobiologia, 408–409, 175–183.CrossRefGoogle Scholar
  5. Anderson, I., Tobias, C., Neikirk, B., & Wetzel, R. (1997). Development of a process-based nitrogen mass balance model for Virginia (USA) Spartina alterniflora salt marsh: implications for net DIN flux. Marine Ecology Progress Series, 29, 13–27.CrossRefGoogle Scholar
  6. Azzoni, R., Giordani, M., Bartoli, D., & Welsh, P. (2001). Iron, sulphur and phosphorus cycling in the rhizosphere sediments of an euthrophic Ruppia cirrhosa meadow (Valle Smarlacca, Italy). Journal of Sea Research, 45, 15–26.CrossRefGoogle Scholar
  7. Berner, R. (1980). Early diagenesis. A theoretical approach. USA: Princeton University Press.Google Scholar
  8. Breiner, J., Nidzieko, N., Monismith, S., Moore, W., & Paytan, A. (2009). Tidally regulated chemical fluxes across the sediment-water interface in Elkhorn Slough, California: evidence from a coupled geochemical and hydrodynamic approach. Limnology and Oceanography, 54, 1964–1980.CrossRefGoogle Scholar
  9. Brotas, V., Ferreira, A., Vale, C., & Catarino, F. (1990). Oxygen profiles in intertidal sediments of Ria Formosa (S. Portugal). Hydrobiologia, 207, 123–129.CrossRefGoogle Scholar
  10. Cabrita, T., (1997). Inorganic nitrogen dynamics in the Tagus estuary (Portugal). Ph.D. Thesis, University of Lisbon.Google Scholar
  11. Cabrita, T., Catarino, F., & Vale, C. (1999). The effect of tidal range on the flushing of ammonium from intertidal sediments of the Tagus estuary, Portugal. Oceanologica Acta, 22, 291–302.CrossRefGoogle Scholar
  12. Caçador, I., Caetano, M., Duarte, B., & Vale, C. (2009). Stock and losses of trace elements from salt marsh plants. Marine Environmental Research, 67, 75–82.CrossRefGoogle Scholar
  13. Caetano, M., & Vale, C. (2002). Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Marine Chemistry, 79, 261–271.CrossRefGoogle Scholar
  14. Caetano, M., Madureira, M., Vale, C., Bebianno, M., & Gonçalves, M. (1995). Variations of Mn, Fe and S concentrations in sediment pore waters of Ria Formosa at different time scales. Netherlands Journal of Aquatic Ecology, 29, 275–281.CrossRefGoogle Scholar
  15. Caetano, M., Falcão, M., Vale, C., & Bebianno, M. (1997). Tidal flushing of ammonium, iron and manganese from inter-tidal sediment pore waters. Marine Chemistry, 58, 203–211.CrossRefGoogle Scholar
  16. Caetano, M., Fonseca, N., Cesário, R., & Vale, C. (2007). Mobility of Pb in salt marshes recorded by total content and stable isotopic signature. The Science of the Total Environment, 380, 84–92.CrossRefGoogle Scholar
  17. Caetano, M., Vale, C., Cesário, R., & Fonseca, N. (2008). Evidence for preferential depths of metal retention in roots of salt marsh plants. The Science of the Total Environment, 390, 466–474.CrossRefGoogle Scholar
  18. Canário, J., Caetano, M., Cesário, R., & Vale, C. (2007). Evidence for elevated production of MeHg in salt marshes. Environment Science Technology, 41, 7376–7382.CrossRefGoogle Scholar
  19. Cartaxana, P., & Lloyd, D. (1999). N2, N2O and O2 profiles in a Tagus estuary salt marsh. Estuarine, Coastal and Shelf Science, 48, 751–756.CrossRefGoogle Scholar
  20. Crespo, R., (1993). Cartografia do habitat potencial de Passeriformes no Estuário do Tejo por processamento digital de imagem. Degree Thesis FC – University of Lisbon, Lisbon.Google Scholar
  21. Deborde, J., Anchultz, P., Auby, I., Glé, C., Commarieu, M.-V., Maurer, D., Lecroart, P., & Abril, G. (2008). Role of tidal pumping on nutrient cycling in a temperate lagoon (Arcachon Bay, France). Marine Chemistry, 109, 98–114.CrossRefGoogle Scholar
  22. Falcão, M., & Vale, C. (1995). Tidal flushing of ammonium from inter-tidal sediments of Ria Formosa, Portugal. Netherlands Journal of Aquatic Ecology, 29, 239–244.CrossRefGoogle Scholar
  23. Filippelli, M., (2002). The global phosphorous cycle. In, M. Kohn, J. Rakovan, J. Hughes (eds.), Phosphates, Geochemical, Geobiological and Materials Importance, Reviews in Mineralogy and Geochemistry, Washington D. C, 48, 391–425.Google Scholar
  24. Froelich, P., Klinkhammer, G., Bender, M., Luedtke, N., Heath, G., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic, suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1091.CrossRefGoogle Scholar
  25. Graaf, A., Mulder, A., Bruijn, P., Jetten, M., Robertson, L., & Kuenen, J. (1995). Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, 61, 1256–1261.Google Scholar
  26. Gross, M., Hardisky, M., Wolf, P., & Klemas, V. (1991). Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries, 14, 180–191.Google Scholar
  27. Hansen, H., & Koroleff, F. (1999). Determination of nutrients. In K. Grasshoff, K. Kremling, & M. Ehrhardt (Eds.), Methods of seawater analysis (pp. 159–226). Weinheim: Wiley-VCH Verlag.CrossRefGoogle Scholar
  28. Hemond, H., Nuttle, W., Burke, R., & Stolzenbach, K. (1984). Surface infiltration in salt marshes, theory, measurement, and biogeochemical implications. Water Resources Research, 20, 591–600.CrossRefGoogle Scholar
  29. Howes, B., Howarth, R., Teal, J., & Valiela, I. (1981). Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnology and Oceanography, 26, 350–360.CrossRefGoogle Scholar
  30. Huettel, M., Ziebis, W., Forster, S., & Luther, G. (1998). Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochimica Acta, 62, 613–631.CrossRefGoogle Scholar
  31. Kerner, M., & Wallmann, K. (1992). Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe estuary during the tidal cycle. Estuarine, Coastal and Shelf Science, 35, 371–393.CrossRefGoogle Scholar
  32. Koretsky, C., Haveman, M., Cuellar, A., Beuving, L., Shattuck, T., & Wagner, M. (2008). Influence of Spartina and Juncus on saltmarsh sediments. I. Pore water geochemistry. Chemical Geology, 255, 87–99.CrossRefGoogle Scholar
  33. Li, Y., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38, 703–714.CrossRefGoogle Scholar
  34. Lillebø, A., Flindt, M., Pardal, M., & Marques, J. (2006). The effect of Zostera noltii, Spartina maritima and Scirpus maritimus on sediment pore-water profiles in a temperate intertidal estuary. Hydrobiologia, 555, 175–183.CrossRefGoogle Scholar
  35. Lovely, D., & Phillips, E. (1988). Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, 6, 145–155.CrossRefGoogle Scholar
  36. Mackin, J., & Aller, R. (1984). Ammonium adsorption in marine sediments. Limnology and Oceanography, 29, 250–257.CrossRefGoogle Scholar
  37. Meysman, F., Galaktionov, O., Glud, R., & Middelburg, J. (2010). Oxygen penetration around burrows and roots in aquatic sediments. Journal of Marine Research, 68, 309–336.CrossRefGoogle Scholar
  38. Mitsch, W., & Gosselink, J. (2000). Wetlands (p. 920). New York: John Wiley and Sons Inc.Google Scholar
  39. Osgood, D. (2000). Subsurface hydrology, nutrient export from barrier island marshes at different tidal ranges. Wetlands Ecology and Management, 8, 133–146.CrossRefGoogle Scholar
  40. Rocha, C. (1997). Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnology and Oceanography, 43, 823–831.CrossRefGoogle Scholar
  41. Salgueiro, N., & Caçador, I. (2007). Short-term sedimentation in Tagus estuary, Portugal: the influence of salt marsh plants. Hydrobiologia, 587, 185–193.CrossRefGoogle Scholar
  42. Santos-Echeandía, J., Vale, C., Caetano, M., Pereira, P., & Prego, R. (2010). Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its escape to water column (Tagus estuary, Portugal). Marine Environmental Research, 70, 358–367.Google Scholar
  43. Simas, T., & Ferreira, J. (2007). Nutrient enrichment and the role of salt marshes in the Tagus estuary (Portugal). Estuarine, Coastal and Shelf Science, 75, 393–407.CrossRefGoogle Scholar
  44. Slomp, C., (1997). Early diagenesis of phosphorus in continental margin sediments. Ph.D. Thesis, Landbouwuniversiteit Wageningen.Google Scholar
  45. Sundby, B., Vale, C., Caetano, M., & Luther, G. (2003). Redox chemistry in the root zone of a salt marsh sediment in the Tagus estuary, Portugal. Aquatic Geochemistry, 9, 257–271.CrossRefGoogle Scholar
  46. Taillefert, M., Neuhuber, S., & Bristow, G. (2007). The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments. Geochemical Transactions, 8, 6.CrossRefGoogle Scholar
  47. Weis, J., & Weis, P. (2004). Metal uptake, transport and release by wetland plants, implications for phytoremediation and restoration. Environmental International, 30, 685–700.CrossRefGoogle Scholar
  48. Wilson, A., & Gardner, L. (2006). Tidally driven groundwater flow and solute exchange in a marsh, numerical simulations. Water Resources Research, 42, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Caetano
    • 1
    Email author
  • P. Bernárdez
    • 2
  • J. Santos-Echeandia
    • 1
    • 2
  • R. Prego
    • 2
  • C. Vale
    • 1
  1. 1.IPIMAR/INRB National Institute of Biological ResourcesLisbonPortugal
  2. 2.IIM-CSIC Instituto de Investigaciones MarinasVigoSpain

Personalised recommendations