Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 10, pp 6087–6137 | Cite as

Heterotrophic bacteria in drinking water distribution system: a review

  • Shakhawat ChowdhuryEmail author
Article

Abstract

The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

Keywords

Heterotrophic bacteria Water distribution system Water quality HPC modelling Bacteria nutrients Control of HPC bacteria 

Notes

Acknowledgement

The author acknowledges the assistance of the King Fahd University of Petroleum and Minerals to perform this research.

References

  1. Allen, M. J. & Geldreich, E. E. (1978). Distribution line sediments and bacterial regrowth. In: Proceedings of Water Quality Technology Conference, (pp. 1–6). Denver, CO, USA: American Water Works Association.Google Scholar
  2. Allen, M. J., Taylor, R. H., & Geldreich, E. E. (1980). The occurrence of microorganisms in water main encrustations. Journal of American Water Works Association, 72, 614–625.Google Scholar
  3. Allen, M. J., Edberg, C. S., & Reasoner, D. J. (2004). Heterotrophic plate count bacteria—What is their significance in drinking water? International Journal of Food Microbiology, 92, 265–274.CrossRefGoogle Scholar
  4. Anonymous (2000). The water supply (water quality) regulations 2000. Statutory instrument no. 3184, Stationery Office Ltd., London.Google Scholar
  5. Anonymous (2001). Staatsblad van het Koninkrijk der Nederlanden. Jaargang. http://www.vrom.nl/docs/milieu/waterleidingbesluit.pdf.
  6. Appenzeller, B. M. R., Batte, M., Mathieu, L., Block, J. C., Lahoussine, V., Cavard, J., et al. (2001). Effect of adding phosphate in drinking water on bacterial growth in slightly and highly corroded pipes. Water Research, 35, 1100–1105.CrossRefGoogle Scholar
  7. Ashbolt, N. J. (2003). Methods to identify and enumerate frank and opportunistic bacterial pathogens in water and biofilms. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 146–177). London: IWA.Google Scholar
  8. Ashbolt, N. J. (2004). Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs). Toxicology, 198, 255–262.CrossRefGoogle Scholar
  9. Ashbolt, N. J., Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial water quality. In L. Fewtrell & J. Bartram (Eds.), Water quality: guidelines standards and health. London: IWA.Google Scholar
  10. Aus–NZ (2004). Australian drinking water guidelines 6. Australian National Health and Medical Research Council.Google Scholar
  11. AWWA (American Water Works Association). (2000). Disinfection systems survey committee report, water quality division. Journal of American Water Works Association, 9, 24–43.Google Scholar
  12. Bagh, L. K., Hans-Albrechtsen, H. J., Arvin, E., & Ovesen, K. (2004). Distribution of bacteria in a domestic hot water system in a Danish apartment building. Water Research, 38, 225–235.CrossRefGoogle Scholar
  13. Barbeau, B., Julienne, K., Gauthier, V., Millette, R., & Prevost, M. (1999). Dead-end flushing of a distribution system, short and long-term impacts on water quality. In: Proceedings of Water Quality Technol. Conference, (pp. 13). Denver, CO, USA: Tampa, FL, USA. American Water Works Association.Google Scholar
  14. Bartram, J., Cotruvo, J., Exner, M., Fricker, C., & Glasmacher, A. (2004). Heterotrophic plate count measurement in drinking water safety management. Report of an expert meeting Geneva 24–25 April 2002. International Journal of Food Microbiology, 92, 241–247.CrossRefGoogle Scholar
  15. Batte, M., Appenzeller, B. M. R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., et al. (2003). Biofilms in drinking water distribution systems. Reviews in Environmental Science and Biotechnology, 2, 147–168.CrossRefGoogle Scholar
  16. Batte, M., Koudjonou, B., Laurent, P., Mathieu, L., Coallier, J., & Prevost, M. (2003). Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system. Water Research, 37, 1351–1361.CrossRefGoogle Scholar
  17. Baylis, J. R. (1938). Bacterial aftergrowths in distribution systems. Water Works and Sewerage, 15, 720–722.Google Scholar
  18. Beech, I. B., & Sunner, J. (2004). Biocorrosion: Towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15, 181–186.CrossRefGoogle Scholar
  19. Berry, D., Xi, C., & Raskin, L. (2006). Microbial ecology of drinking water distribution systems. Current Opinion in Biotechnology, 17(3), 297–302.CrossRefGoogle Scholar
  20. Boe-Hansen, R., Albrechtsen, H. J., Arvin, E., & Jorgensen, C. (2002). Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Research, 36, 4477–4486.CrossRefGoogle Scholar
  21. Bois, F. Y., Fahmy, T., Block, J. C., & Gatel, D. (1997). Dynamic modeling of bacteria in a pilot drinking-water distribution system. Water Research, 31(12), 3146–3156.CrossRefGoogle Scholar
  22. Butterfield, P. W., Camper, A. K., Ellis, B. D., & Jones, W. L. (2002). Chlorination of model drinking water biofilm: Implications for growth and organic carbon removal. Water Research, 36, 4391–4405.CrossRefGoogle Scholar
  23. Camper, A. K. (1996). Factors influencing microbial growth in the distribution system: Laboratory and pilot experiments. Denver: American Water Works Association Research Foundation.Google Scholar
  24. Camper, A. K. (2004). Involvement of humic substances in regrowth. International Journal of Food Microbiology, 92, 355–364.CrossRefGoogle Scholar
  25. Camper, A. K., LeChevallier, M. W., Broadway, S. C., & McFeters, G. A. (1985). Growth and persistence of pathogens on granular activated carbon. Applied and Environmental Microbiology, 50, 1178–1382.Google Scholar
  26. Camper, A. K., LeChevallier, M. W., Broadway, S. C., & McFeters, G. A. (1986). Bacteria associated with granular activated carbon particles in drinking water. Applied and Environmental Microbiology, 52, 434–438.Google Scholar
  27. Carriere, A., Barbeau, B., Gauthier, V., Morissette, C., Millette, R., & Lalumiere, A. (2002). Unidirectional flushing, loose deposits characterization in test-zones of three Canadian distribution systems. In: Proceedings of Water Quality Technology Conference, Denver, CO, USA: American Water Works Association.Google Scholar
  28. Carter, J. T., Rice, E. W., Buchberger, S. G., & Lee, Y. (2000). Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system. Water Research, 34, 1495–1502.CrossRefGoogle Scholar
  29. Chlorine Chemistry Council (2003). Drinking water chlorination: A review of disinfection practices and issues. Chlorine Chemistry Council 2003, Arlington.Google Scholar
  30. Chowdhury, S., Champagne, P., & MacLellan, P. J. (2009). Models for predicting disinfection byproducts (DBPs) in drinking water: A chronological review. Sci. of the total Env., 407(14), 4189–4206.CrossRefGoogle Scholar
  31. Chowdhury, S., Rodriguez, M., & Sadiq, R. (2011). Disinfection byproducts in the Canadian Provinces: Associated cancer risks and medical expenses. Journal of Hazardous Materials, 187, 574–584.CrossRefGoogle Scholar
  32. Codony, F., Morato, J., & Mas, J. (2005). Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Research, 39, 1896–1906.CrossRefGoogle Scholar
  33. Colbourne, J. S., Pratt, D. J., Smith, M. G., Fisher-Hoch, S. P., & Harper, D. (1984). Water fittings as sources of Legionella pneumophila in a hospital plumbing system. Lancet 1, 210–213.Google Scholar
  34. Crombrugge, J., & Waes, G. (1991). ATP method. In W. Heeschen (Ed.), Methods for assessing the bacteriological quality of raw milk from the farm (pp. 53–60). Belgium: International Dairy Federation.Google Scholar
  35. De Rosa, S. (1993). Loose deposits in water mains, Report DoE 3118-/2. London: Department of the Environment. 161.Google Scholar
  36. Deininger, R. A., & Lee, J. (2000). Rapid detection of bacteria in drinking water. First World Water Congress of the International Water Association (IWA), Paris, France.Google Scholar
  37. Deininger, R. A., & Lee, J. (2005). Rapid detection of bacteria in drinking water. In: A. Omelchenko, A.A. Pivovarov, W.J. Swindall (Eds.). Modern Tools and Methods of Water Treatment for Improving Living Standards (pp. 71–78). Berlin: Springer.Google Scholar
  38. Delahaye, E., Welte, B., Levi, Y., Leblon, G. A., & Montiel, A. (2003). An ATP-based method for monitoring the microbiological drinking water quality in a distribution network. Water Research, 37, 3689–3696.CrossRefGoogle Scholar
  39. DiGiano, F. A., & Zhang, W. (2004). Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution systems. Env. Sci. Technol., 38, 5925–5931.CrossRefGoogle Scholar
  40. Dukan, S., Levi, Y., Piriou, P., Guyon, F., & Villon, P. (1996). Dynamic modelling of bacterial growth in drinking water networks. Water Research, 30(9), 1991–2002.CrossRefGoogle Scholar
  41. Edberg, S. C., & Allen, M. J. (2004). Virulence and risk from drinking water of heterotrophic plate count bacteria in human population groups. International Journal of Food Microbiology, 92, 255–263.CrossRefGoogle Scholar
  42. Edberg, S. C., Kopps, S., Kontnick, C., & Escarzaga, M. (1997). Analysis of cytotoxicity and invasiveness of heterotrophic plate count bacteria (HPC) isolated from drinking water on blood media. Journal of Applied Microbiology, 82, 455–461.CrossRefGoogle Scholar
  43. Ellis, B., Butterfield, P., Jones, W. L., McFeters, G. A., & Camper, A. K. (2000). Effects of carbon source, carbon concentration, and chlorination on growth related parameters of heterotrophic biofilm bacteria. Microbial Ecology, 38, 330–347.CrossRefGoogle Scholar
  44. Emtiazi, F., Schwartz, T., Marten, S. M., Sidenstein, P. K., & Obst, U. (2004). Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Research, 38(5), 1197–1206.CrossRefGoogle Scholar
  45. Escobar, C. I., Randall, A. A., & Taylor, J. (2001). Bacterial growth in distribution systems: Effect of assimilable organic carbon and biodegradable dissolved organic carbon. Env. Sci. Technol., 35(17), 3442–3447.CrossRefGoogle Scholar
  46. European Union (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Euro. Communities, 5.12.98, L330/32–L330/53.Google Scholar
  47. Exner, M., Vacata V., & Gebel J. (2003). Public health aspects of the role of HPC—An introduction. In: J. Bartram, J. Cotruvo, M. Exner, C. Fricker, and A. Glasmacher (Eds.). Heterotrophic plate counts and drinking-water safety, (pp. 12–20). London: IWA.Google Scholar
  48. Fass, S., Dincher, M. L., Reasoner, D. J., Gatel, D., & Block, J. C. (1996). Fate of Escherichia coli experimentally injected in a drinking water distribution pilot system. Water Research, 30, 2215–2221.CrossRefGoogle Scholar
  49. Ferley, J. P., Zmirou, D., Collin, J. F., & Charrel, M. (1986). Etude longitudinale des risqué liés à la consommation d’eaux non conformes aux normes bactériologiques. Revue d’Épidémiologie et de Santé Publique, 34, 89–99.Google Scholar
  50. Francisque, A., Rodriguez, M., Miranda-Moreno, L. F., Sadiq, R., & Proulx, F. (2009). Modeling heterotrophic bacteria counts in a water distribution system. Water Research, 43, 1075–1087.CrossRefGoogle Scholar
  51. Gagnon, G. A., & Huck, P. M. (2001). Removal of easily biodegradable organic compounds by drinking water biofilms: analysis of kinetics and mass transfer. Water Research, 35(10), 2554–2564.CrossRefGoogle Scholar
  52. Gagnon, G. A., & Slawson, R. M. (1999). An efficient biofilm removal method for bacterial cells exposed to drinking water. Journal of Microbiological Methods, 34, 203–214.CrossRefGoogle Scholar
  53. Gauthier, V., Gerard, B., Portal, J. M., Block, J. C., & Gatel, D. (1999). Organic matter as loose deposits in a drinking water distribution system. Water Research, 33(4), 1014–1026.CrossRefGoogle Scholar
  54. Geldreich, E. E. (1989). Drinking water microbiology—new directions toward water quality enhancement. International Journal of Food Microbiology, 9, 295–312.CrossRefGoogle Scholar
  55. Geldreich, E. E., & LeChevallier, M. W. (1999). Microbial water quality in distribution systems. In R. D. Letterman (Ed.), Water quality and treatment (pp. 18.1–18.49). New York: McGraw-Hill.Google Scholar
  56. Geldreich, E. E., Nash, H. D., Reasoner, D. J., & Taylor, R. H. (1972). The necessity of controlling bacterial populations in potable waters: community water supply. Journal of American Water Works Association, 64, 596–602.Google Scholar
  57. Geldreich, E. E., Nash, H. D., Spino, D. F., & Reasoner, D. J. (1980). Bacterial dynamics in a water supply reservoir: a case study. Journal of American Water Works Association, 72, 31–40.Google Scholar
  58. Geldreich, E. E., Taylor, R. H., Blannon, J. C., & Reasoner, D. J. (1985). Bacterial colonization of point-of-use water treatment devices. Journal of American Water Works Association, 77, 72–80.Google Scholar
  59. Giao, M. S., Azevedo, N. F., Wilks, S. A., Vieira, M. J., & Keevil, C. W. (2010). Effect of chlorine on incorporation of H pylori into drinking water biofilms. Applied Environmental Microbiology, 76, 1669–1673.CrossRefGoogle Scholar
  60. Haas, C. N. (1999). Benefits of using a disinfectant residual. Journal of American Water Works Association, 91(1), 65–69.Google Scholar
  61. Haas, C. N., Meyer, M. A., & Paller, M. S. (1983). The ecology of acid-fast organisms in water supply, treatment and distribution systems. Journal of American Water Works Association, 75, 139–144.Google Scholar
  62. Hallam, N. B., West, J. R., Forster, C. F., & Simms, J. (2001). The potential for biofilm growth in water distribution systems. Water Research, 17, 4063–4071.CrossRefGoogle Scholar
  63. Hambsch, B. (1999). Distributing groundwater without a disinfectant residual. Journal of American Water Works Association, 91(1), 81–85.Google Scholar
  64. Hambsch, B., Sacre, C., & Wagner, I. (2004). Heterotrophic plate count and consumer’s health under special consideration of water softeners. International Journal of Food Microbiology, 92, 365–373.CrossRefGoogle Scholar
  65. Hammes, F. A., Berney, M., Wang, Y., Vital, M., Koster, O., & Egli, T. (2008). Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42, 269–277.CrossRefGoogle Scholar
  66. Hascoet, M. C., Servais, P., & Billeng, G. (1986). Use of biological analytical methods to optimize ozonation and GAC filtration in surface water treatment. Denver, CO: Paper presented at Annual Meeting, AWWA.Google Scholar
  67. Havelaar, A. H., De Hollander, A. E. M., Teunis, P. F. M., Evers, E. G., Van Kranen, H. J., Versteegh, J. F. M., et al. (2000a). Balancing the risks and benefits of drinking water disinfection: disability adjusted life-years on the scale. Environmental Health Perspectives, 108(4), 315–321.CrossRefGoogle Scholar
  68. Havelaar, A. H., de Wit, M. A., van Koningsveld, R., & Van Kempen, E. (2000b). Health burden in The Netherlands due to infection with thermophilic Campylobacter spp. Epidemiology and Infection, 125, 505–522.CrossRefGoogle Scholar
  69. Health Canada (1996). Guidelines for Canadian drinking water quality, 6th edn. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/guidelines_sixth-rec_e.html.
  70. Health Canada (2009). Guidelines for Canadian Drinking Water Quality. Prepared by the Federal-Provincial-Territorial Committee on Health and the Environment: March.Google Scholar
  71. Hellard, M. E., Sinclair, M. I., Forbes, A. B., & Fairley, C. K. (2001). A randomized blinded controlled trial investigating the gastrointestinal health effects of drinking water quality. Environmental Health Perspectives, 109, 773–778.CrossRefGoogle Scholar
  72. Hem, L. J., & Efraimsen, H. (2001). Assimilable organic carbon in molecular weight fractions of natural organic matter. Water Research, 35(4), 1106–1110.CrossRefGoogle Scholar
  73. Hobbie, J. E., Daley, R. J., & Jasper, S. (1977). Use of nucleopore filter for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33(5), 1225–1228.Google Scholar
  74. Holm-Hansen, O., & Booth, C. R. (1966). The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnology and Oceanography, 11, 510–519.CrossRefGoogle Scholar
  75. Hu, J. Y., Wang, Z. S., Ng, W. J., & Ong, S. L. (1999). The effect of water treatment processes on the biological stability of potable water. Water Research, 33(11), 2587–2592.CrossRefGoogle Scholar
  76. Hu, J. Y., Yu, B., Feng, Y. Y., Tan, X. L., Ong, S. L., Ng, W. J., et al. (2005). Investigation into biofilms in a local drinking water distribution system. Biofilms, 2, 19–25.CrossRefGoogle Scholar
  77. Huck, P. M., & Gagnon, G. A. (2004). Understanding the distribution system as a bioreactor: a framework for managing heterotrophic plate count levels. International Journal of Food Microbiology, 92, 347–353.CrossRefGoogle Scholar
  78. Hunter, P. R. (1997). Waterborne disease: Epidemiology and ecology. Chichester: Wiley.Google Scholar
  79. Hunter, P. R. (2003). Epidemiological and risk assessment evidence of disease linked to HPC bacteria. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 119–137). London: IWA.Google Scholar
  80. IPCS (International Programme on Chemical Safety) (2000). Disinfectants and disinfectant by-products. Environmental Health Criteria, 216.Google Scholar
  81. IRIS (Integrated Risk Information System) (2011). The Integrated Risk Information System online database. Washington: US Environmental Protection Agency. http://www.epa.gov/iris/subst/index.html.
  82. Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J., & Angles, M. (2004). Modeling bacterial growth in drinking water: Effect of nutrients. Journal of American Water Works Association, 96(5), 129–141.Google Scholar
  83. Kaplan, L. A., Reasoner, D. J., & Rice, E. W. (1994). A survey of BOM in US drinking waters. Journal of American Water Works Association, 86, 121–132.Google Scholar
  84. Keinänen, M. M., Martikainen, P. J., & Kontro, M. H. (2004). Microbial community structure and biomass in developing drinking water biofilms. Canadian Journal of Microbiology, 50, 183–191.CrossRefGoogle Scholar
  85. Kerr, C. J., Osborn, K. S., Robson, G. D., & Handley, P. S. (1999). The relationship between pipe material and biofilm formation in a laboratory model system. J. Appl. Microbiol. Symposium Suppl., 85, 29S–38S.CrossRefGoogle Scholar
  86. Kunimoto, D. Y., Peppler, M. S., Talbot, J., Phillips, P., & Shafran, S. D. (2003). Analysis of Mycobacterium avium complex isolates from blood samples of AIDS patients by pulsed-field gel electrophoresis. Journal of Clinical Microbiology, 41, 498–499.CrossRefGoogle Scholar
  87. Langmark, J., Storey, M. V., Ashbolt, N. J., & Stenstrom, T. A. (2007). The effects of UV disinfection on distribution pipe biofilm growth and pathogen incidence within the greater Stockholm area. Sweden. Water Res., 41, 3327–3336.Google Scholar
  88. Laurent, P., & Servais, P. (1995). Fixed bacterial biomass estimated by potential exoproteolytic activity. Canadian Journal of Microbiology, 41, 749–752.CrossRefGoogle Scholar
  89. Laurent, P., Servais, P., Prevost, M., Gatel, D., & Clement, B. (1997). Testing the SANCHO model on distribution systems. Journal of American Water Works Association, 89(7), 92–103.Google Scholar
  90. LeChevallier, M. W. (2003). Conditions favouring coliform and HPC bacterial growth in drinking water and on water contact surfaces. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 177–199). London: IWA.Google Scholar
  91. LeChevallier, M. W., & McFeters, G. A. (1985). Interactions between heterotrophic plate count bacteria and coliform organisms. Applied and Environmental Microbiology, 49, 1338–1341.Google Scholar
  92. LeChevallier, M. W., Hassenauer, T. S., Camper, A. L., & McFeters, G. A. (1984). Disinfection of bacteria attached to granular activated carbon. Applied and Environmental Microbiology, 48, 918–923.Google Scholar
  93. LeChevallier, M. W., Babcock, R. M., & Lee, R. G. (1987). Examination and characterization of distribution system biofilms. Applied and Environmental Microbiology, 54, 2714–2724.Google Scholar
  94. LeChevallier, M. W., Cawthon, C. D., & Lee, R. G. (1988). Factors promoting survival of bacteria in chlorinated water supplies. Applied and Environmental Microbiology, 54, 649–654.Google Scholar
  95. LeChevallier, M. W., Schulz, W., & Lee, R. G. (1991). Bacterial nutrients in drinking water. Applied and Environmental Microbiology, 57, 857–862.Google Scholar
  96. LeChevallier, M. W., Welch, N. J., & Smith, D. B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62(7), 2201–2211.Google Scholar
  97. Lehtola, M., Miettinen, I. T., Vartiainen, T., & Martiakainen, P. J. (1999). A new sensitive bioassay for determination of microbially available phosphorus in water. Applied and Environmental Microbiology, 65(5), 2032–2034.Google Scholar
  98. Lehtola, M. J., Miettinen, I. T., & Martikainen, P. J. (2002). Biofilm formation in drinking water affected by low concentrations of phosphorus. Canadian Journal of Microbiology, 48, 494–499.CrossRefGoogle Scholar
  99. Lehtola, M. J., Miettinen, I. T., Keinanen, M. M., Kekki, T., Laine, O., Hirvonen, A., et al. (2004). Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Research, 38, 3769–3779.CrossRefGoogle Scholar
  100. Lehtola, M. J., Miettinen, I. T., Hirvonen, A., Vartiainen, T., & Martikainen, P. J. (2007). Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy. International Journal of Hygiene and Environmental Health, 210, 725–732.CrossRefGoogle Scholar
  101. Lightfoot, N. F. (2003). Bacteria of potential health concern. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 119–137). London: IWA.Google Scholar
  102. Lipponen, M. T. T., Suutari, M. H., & Martikainen, P. J. (2002). Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Research, 36, 4319–4329.CrossRefGoogle Scholar
  103. Liu, W., Wu, H., Wang, Z., Ong, S. L., Hu, J. Y., & Ng, W. J. (2002). Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Research, 36, 891–898.CrossRefGoogle Scholar
  104. Lu, C., Biswas, P., & Clark, R. M. (1995). Simultaneous transport of substrates, disinfectants and microorganisms in water pipes. Water Research, 29(3), 881–894.CrossRefGoogle Scholar
  105. Lu, W., Kiene, L., & Levi, Y. (1999). Chlorine demand of biofilms in water distribution systems. Water Research, 33(3), 827–835.CrossRefGoogle Scholar
  106. MacKenzie, W. R., Hoxie, N. J., Proctor, M. E., Gradus, M. S., & Blair, K. A. (1994). A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. The New England Journal of Medicine, 331, 161–171.CrossRefGoogle Scholar
  107. Mains, C. (2008). Biofilms control in distribution system. Tech Brief, National Environmental Service Center (NESC), Summer 2008, 8(2).Google Scholar
  108. Manuel, C. M., Nunes, O. C., & Melo, L. F. (2007). Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research, 41, 551–562.CrossRefGoogle Scholar
  109. Manz, W., Swezyk, U., Ericsson, P., Amann, R., Schleifer, K. H., & Stenström, T. A. (1993). In-situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probe. Applied and Environmental Microbiology, 5, 2293–2298.Google Scholar
  110. Martin, R. S., Gates, W. H., Tobin, R. S., Grantham, D., Sumarah, R., Wolfe, P., et al. (1982). Factors affecting coliform bacteria growth in distribution systems. Journal of American Water Works Association, 74, 34–36.Google Scholar
  111. Mathieu, L., Paquin, J. L., Block, J. C., Randon, G., Maillard, J., & Reasoner, D. (1992). Parameters governing bacterial growth in water distribution system. Revue des Sciences de l’Eau, 5(special issue), 91–112.Google Scholar
  112. Maul, A., El-Shaarawi, A. H., & Block, J. C. (1985). Heterotrophic bacteria in water distribution systems. I. Spatial and temporal variation. Sci. Total Environ., 44, 201–214.Google Scholar
  113. McRae, B. M., LaPara, T. M., & Hozalski, R. M. (2004). Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere, 55, 915–925.CrossRefGoogle Scholar
  114. Metcalf, A., & Eddy, A. (2003). Wastewater engineering: treatment, disposal and reuse (3rd ed.). New York: McGraw-Hill.Google Scholar
  115. Miettinen, I., Vartianen, T., & Martikainen, P. J. (1999). Determination of assimilable organic carbon in humus rich drinking waters. Water Research, 33(10), 2277–2282.CrossRefGoogle Scholar
  116. Mittelman, M. W. (1995). Biofilm development in purified watersystems. In H. M. Lappin-Scott & J. W. Costerton (Eds.), Microbial biofilms (pp. 133–147). Cambridge: Cambridge Univ. Press.Google Scholar
  117. MOE (The Ontario Ministry of the Environment) (2002). A summary: Report of the Walkerton inquiry: The events of May 2000 and related issues. Part One; Ontario Ministry of the Attorney General.Google Scholar
  118. Momba, M. N. B., Kfir, R., Venter, S. N., & Cloete, T. E. (2000). An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA, 26(1), 59–66.Google Scholar
  119. MWH (Montgomery Watson Harza). (2005). Water treatment: principles and design. Hoboken: Wiley.Google Scholar
  120. Nagy, L. A., & Olson, B. H. (1982). The occurrence of filamentous fungi in drinking water distribution systems. Canadian Journal of Microbiology, 28, 667–671.CrossRefGoogle Scholar
  121. NHMRC & ARMC (Nat. Health and Medical Res. Council and Agr. and Resource Man. Council of Australia and New Zealand) (1996). Australian drinking water guidelines—summary. Commonwealth of Australia.Google Scholar
  122. NIHS (National Institute of Health Sciences) (2002). Waterworks Law (21 Dec. 1992). Water quality standard of drinking water. http://www.nihs.go.jp/law/suido/esuido.html.
  123. Niquette, P., Servais, P., & Savoir, R. (2001). Bacterial dynamics in the drinking water distribution system of Brussels. Water Research, 35(3), 675–682.CrossRefGoogle Scholar
  124. Norton, C. D., & LeChevallier, M. W. (2000). A pilot study of bacteriological population changes through potable water treatment and distribution. Applied and Environmental Microbiology, 66, 268–276.CrossRefGoogle Scholar
  125. Obi, C. L., Potgieter, N., Bessong, P. O., & Matsaung, G. (2002). Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA, 28(3), 287–292.CrossRefGoogle Scholar
  126. Obst, U., & Schwartz, T. (2007). Microbial characteristics of water distribution: Compiled investigations in a German drinking water distribution system. Practice Periodical of Hazardous Toxic and Radioactive Waste Management, 11(2), 78–82.CrossRefGoogle Scholar
  127. O'Connor, J. T., & Banerji, S. (1984). Biologically mediated corrosion and water quality deterioration in distribution systems. EPA/600/2-84/056, US Environmental Protection Agency, Washington.Google Scholar
  128. Ogura, N. (1977). High molecular weight organic matter in seawater. Marine Chemistry, 5, 534–549.CrossRefGoogle Scholar
  129. Oliveri, V. P., Bakalian, A. E., Bossung, K. W., & Lowther, E. D. (1985). Recurrent coliforms in water distribution systems in the presence of free residual chlorine. In R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts Jr., & V. A. Jacobs (Eds.), Water chlorination, chemistry, environmental impact and health effects (pp. 651–666). Chelsea: Lewis.Google Scholar
  130. Pavlov, D., de Wet, C. M. E., Grabow, W. O. K., & Ehlers, M. M. (2004). Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. International Journal of Food Microbiology, 92, 275–287.CrossRefGoogle Scholar
  131. Payment, P., & Robertson, W. (2004). The microbiology of piped distribution systems and public health. In R. Ainsworth (Ed.), Safe Piped water: Managing microbial water quality in piped distribution systems (pp. 1–18). London: IWA.Google Scholar
  132. Payment, P., Franco, E., Richardson, L., & Siemiatycki, J. (1991). Gastrointestinal health effects associated with the consumption of drinking water produced by point of-use domestic reverse-osmosis filtration units. Applied and Environmental Microbiology, 57, 945–948.Google Scholar
  133. Payment, P., Siemiatycki, J., Richardson, L., Renaud, G., Franco, E., & Prévost, M. (1997). A prospective epidemiological study of gastrointestinal health effects due to the consumption of drinking water. International Journal of Environmental Health Research, 7, 5–31.CrossRefGoogle Scholar
  134. Payment, P., Sartory, D. P., & Reasoner, D. J. (2003). The history and use of HPC in drinking-water quality management. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 20–49). London: IWA.Google Scholar
  135. Pederson, K. (1990). Biofilm development on stainless steel and PVC surfaces in drinking water. Water Research, 24(2), 239–243.CrossRefGoogle Scholar
  136. Pemitsky, D. J., Finch, G. R., & Huck, P. M. (1997). Recovery of attached bacteria from GAC fines and implications for disinfection efficacy. Water Research, 31, 385–390.CrossRefGoogle Scholar
  137. Pepper, I. L., Rusin, P., Quintanar, D. R., Haney, C., Josephson, K. L., & Gerba, C. P. (2004). Tracking the concentration of heterotrophic plate count bacteria from the source to the consumers tap. International Journal of Food Microbiology, 92, 289–295.CrossRefGoogle Scholar
  138. Percival, S. L., Knapp, J. S., Edyvean, R. G. J., & Wales, D. S. (1998). Biofilms, mains water and stainless steel. Water Research, 32, 2187–2201.CrossRefGoogle Scholar
  139. Peterborough Utilities Commission (1998). http://www.puc.org/hist.htm.
  140. Pintar, K. D. M., & Slawson, R. M. (2003). Effect of temperature and disinfection strategies on ammonia-oxidizing bacteria in a bench-scale drinking water distribution system. Water Research, 37, 1805–1817.CrossRefGoogle Scholar
  141. Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943–948.CrossRefGoogle Scholar
  142. Power, K. N., & Nagy, L. A. (1999). Relationship between bacterial regrowth and some physical and chemical parameters within Sydney’s drinking water distribution system. Water Research, 33(3), 741–750.CrossRefGoogle Scholar
  143. Pozos, N., Scow, K., Wuertz, S., & Darby, J. (2004). UV disinfection in a model distribution system: biofilm growth and microbial community. Water Research, 38, 3083–3091.CrossRefGoogle Scholar
  144. Prévost, M., Rompré, A., Coallier, J., Servais, P., Laurent, P., Clement, B., et al. (1998). Suspended bacterial biomass and activity in full-scale drinking water distribution systems: impact of water treatment. Water Research, 32(5), 1393–1406.CrossRefGoogle Scholar
  145. Pyle, B. H., & McFeters, G. A. (1989). Iodine sensitivity of bacteria isolated from iodine water systems. Canadian Journal of Microbiology, 35, 520–523.CrossRefGoogle Scholar
  146. Reasoner, D. J. (1990). Monitoring heterotrophic bacteria in potable water. In G. A. McFeters (Ed.), Drinking water microbiology—Progress and developments (pp. 452–477). New York: Springer.CrossRefGoogle Scholar
  147. Reasoner, D. J. (2004). Heterotrophic plate count methodology in the United States. International Journal of Food Microbiology, 92, 307–315.CrossRefGoogle Scholar
  148. Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49, 1–7.Google Scholar
  149. Regan, J. M., Harrington, G. W., & Noguera, D. R. (2002). Ammonia and nitrite oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Env. Microbiol., 68(1), 73–81.CrossRefGoogle Scholar
  150. Regan, J. M., Harrington, G. W., Baribeau, H., De Leon, R., & Noguera, D. R. (2003). Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Research, 37(1), 197–205.CrossRefGoogle Scholar
  151. Revetta, R. P., Pemberton, A., Lamendella, R., Iker, B., & Domingo, J. W. S. (2010). Identification of bacterial populations in drinking water using 16S rRNA-based sequence analyses. Water Research, 44, 1353–1360.CrossRefGoogle Scholar
  152. Richardson, S. D., Plewa, P. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrences genotoxicity and carcinogenicity of emerging disinfection byproducts in drinking water: A review and roadmap for research. Rev. in Mut. Res., 636(1–3), 178–242.CrossRefGoogle Scholar
  153. Richardson, S. D., Fasano, F., Ellington, J. J., Crumley, F. G., Buettner, K. M., Evans, J. J., et al. (2008). Occurrences and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environmental Science & Technology, 42(22), 8330–8338.CrossRefGoogle Scholar
  154. Richardson, S. D., DeMarini, D. M., Kogevinas, M., Fernandez, P., & Marco, E. (2010). What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environmental Health Perspectives, 118, 1523–1530.CrossRefGoogle Scholar
  155. Ridgway, H. F., & Olson, B. H. (1981). Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Applied and Environmental Microbiology, 41, 274–287.Google Scholar
  156. Ridgway, H. F., & Olson, B. H. (1982). Chlorine resistance patterns of bacteria from two drinking water distribution systems. Applied and Environmental Microbiology, 44, 972–987.Google Scholar
  157. Rizet, M., Fiessinger, F., & Houel, N. (1982). Bacterial regrowth in a distribution system and its relationship with the quality of the feed water: case studies. In: Proceedings of the American Water Works Association Annual Conference (pp. 1199–1214), AWWA, Denver.Google Scholar
  158. Robertson, W., & Brooks, T. (2003). The role of HPC in managing the treatment and distribution of drinking-water. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic plate counts and drinking-water safety (pp. 233–245). London: IWA.Google Scholar
  159. Rodriguez, M. J., Serodes, J., & Roy, D. (2007). Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Research, 41, 4222–4232.CrossRefGoogle Scholar
  160. Rusin, P. A., Rose, J. B., & Gerba, C. P. (1997). Health significance of pigmented bacteria in drinking water. Water Science and Technology, 35, 21–27.CrossRefGoogle Scholar
  161. Saby, S., Sibille, I., Mathieu, L., Paquin, J. L., & Block, J. C. (1997). Influence of water chlorination on the counting of bacteria with DAPI (4¢,6-diamidino-2-phenylindole). Applied and Environmental Microbiology, 63, 1564–1569.Google Scholar
  162. Sartory, D. P. (2004). Heterotrophic plate count monitoring of treated drinking water in the UK: A useful operational tool. International Journal of Food Microbiology, 92, 297–306.CrossRefGoogle Scholar
  163. Sathasivan, A., & Ohgaki, S. (1999). Application of new bacterial regrowth potential method for water distribution system: a clear evidence of phosphorus limitation. Water Research, 33, 137–144.CrossRefGoogle Scholar
  164. Schoenen, D. (1986). Microbial growth due to materials used in drinking water systems. In H. J. Rehm & G. Reed (Eds.), Biotechnology, 8. Weinheim: VCH Verlag sgesellschaft.Google Scholar
  165. Schwartz, T., Hoffmann, S., & Obst, U. (1998). Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Research, 32(9), 2787–2797.CrossRefGoogle Scholar
  166. Servais, P., Billen, G., & Hascoët, M. C. (1987). Determination of the biodegradable fraction of dissolved organic matter in waters. Water Research, 21(4), 445–450.CrossRefGoogle Scholar
  167. Servais, P., Anzil, A., & Ventresque, C. (1989). Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology, 55(10), 2732–2734.Google Scholar
  168. Servais, P., Billen, G., Laurent, P., Levi, Y., & Randon, G. (1992). Studies of BDOC and bacterial dynamics in drinking water distribution system of the Northern Parisian suburb. Sci. Eau., 5, 69–89.Google Scholar
  169. Sibille, I., Mathieu, L., Paquin, J. L., Gatel, D., & Block, J. C. (1997). Microbial characteristics of a distribution system fed with nanofiltered drinking water. Water Research, 31, 2318–2326.CrossRefGoogle Scholar
  170. Silvey, J. K. G., & Roach, W. W. (1953). Actinomycetes in the Oklahoma City water supply. Journal of American Water Works Association, 45, 409–416.Google Scholar
  171. Smith, S. E., Bisset, A., Colbourne, J. S., Holt, D., & Lloyd, B. J. (1997). The occurrence and significance of particles and deposits in a drinking water distribution system. J. New England Water Works. Assoc., 111(2), 135–150.Google Scholar
  172. Srinivasan, S., & Harrington, G. W. (2007). Biostability analysis for drinking water distribution systems. Water Research, 41, 2127–2138.CrossRefGoogle Scholar
  173. Srinivasan, S., Harrington, G. W., Xagoraraki, I., & Goel, R. (2008). Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Research, 42, 3393–3404.CrossRefGoogle Scholar
  174. Stelma, G. N., Jr., Lye, D. J., Smith, B. G., Messer, J. W., & Payment, P. (2004). Rare occurrence of heterotrophic bacteria with pathogenic potential in potable water. International Journal of Food Microbiology, 92, 249–254.CrossRefGoogle Scholar
  175. Stewart, M. H., & Olson, B. H. (1992). Impact of growth condition on resistance of Klebsiella pneumoniae to chloramine. Applied and Environmental Microbiology, 58(8), 2649–2653.Google Scholar
  176. Thofern, E., Schoenen, D., & Tuschewitzki, G. J. (1987). Microbial surface colonization and disinfection problems. Offentl Gesundh.-wes., 49(Suppl), 14–20.Google Scholar
  177. Tropical Disease News (2008). Online news on tropical disease (Nov. 26, 2008). http://www.medindia.net/news/Cholera-Deaths-in-Zimbabwe-Rises-to-53-UN-44488-1.htm.
  178. Trussell, R. R. (1999). Safeguarding distribution system integrity. Journal of American Water Works Association, 91(1), 46–54.Google Scholar
  179. Tung, H. H., & Xie, Y. F. (2009). Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Research, 43, 971–978.CrossRefGoogle Scholar
  180. UK Water supply (water quality) regulations for England and Wales (2000). http://www.dwi.detr.gov.ukyregsysi3184y3184.htm.
  181. USCDC (US Centers for Disease Control and Prevention) (1997). Summary of notifiable diseases. Morbidity and Mortality Weekly Report. CDC Surveillance summaries: Surveillance for waterborne disease outbreaks—USA.Google Scholar
  182. USEPA (U.S. Environmental Protection Agency). (2006). National primary drinking water regulations: Stage 2 disinfectants and disinfection byproducts rule: Final rule. Federal Register, 71(2).Google Scholar
  183. USEPA (US Environmental Protection Agency). (1989). 40 CFR Parts 141 and 142. Drinking water; National primary drinking water regulations; Filtration, disinfection; turbidity, Giardia lamblia, viruses, Legionella, and heterotrophic bacteria; Final Rule. Federal Register, 54(124), 27486–27541.Google Scholar
  184. USEPA (US Environmental Protection Agency). (1991). 40 CFR Parts 141 and 142. Drinking Water; National Primary Drinking Water Regulations; Total Coliforms; Partial Stay of Certain Provisions of Final Rule. Federal Register, 56(10), 1556–1557.Google Scholar
  185. USEPA (US Environmental Protection Agency) (2011). Basic information about disinfectants in drinking water. http://water.epa.gov/drink/contaminants/basicinformation/disinfectants.cfm.
  186. Van der Kooij, D. (1992). Assimilable organic carbon as an indicator of bacterial regrowth. Journal of American Water Works Association, 84, 57–65.Google Scholar
  187. Van der kooij, D. (2003). Managing regrowth in drinkingwater distribution systems. In J. Bartram, J. Cotruvo, M. Exner, C. Fricker, & A. Glasmacher (Eds.), Heterotrophic Plate Counts and Drinking-water Safety (pp. 199–233). London: IWA.Google Scholar
  188. Van der Kooij, D., Oranje, J. P., & Hijnen, W. A. M. (1982). Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter. Applied and Environmental Microbiology, 44(5), 1086–1095.Google Scholar
  189. Van der Kooij, D., Hijnen, W. A. M., & Kruithof, J. C. (1989). The effects of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water. Ozone Science and Engineering, 11, 297–311.CrossRefGoogle Scholar
  190. Van der Kooij, D., Veenendaal, H. R., Baars-Lorist, C., Van der Klift, H. W., & Drost, Y. C. (1995). Biofilm formation on surfaces of glass and Teflon exposed to treated water. Water Research, 29, 1655–1662.CrossRefGoogle Scholar
  191. Van der Kooij, D., Van Lieverloo, J. H. M., Schellart, J., & Hiemstra, P. (1999). Maintaining quality without a disinfectant residual. Journal of American Water Works Association, 91(1), 55–64.Google Scholar
  192. Van der Wende, E., Characklis, W. G., & Smith, D. B. (1989). Biofilms and bacterial drinking water quality. Water Research, 23, 1313–1322.CrossRefGoogle Scholar
  193. Volk, C. J., & LeChevallier, M. W. (2000). Assessing biodegradable organic matter. Journal of American Water Works Association, 92(5), 64–76.Google Scholar
  194. White, D. R., & LeChevallier, M. W. (1993). AOC associated with oils from lubricating well pumps. Journal of American Water Works Association, 85(8), 112–114.Google Scholar
  195. WHO (World Health Organization) (2004). Water and sanitation: Facts and figures. http://www.who.int/water_sanitation_health/publications/factsfigures04/.
  196. WHO (World Health Organization). (2011). Guidelines for drinking-water quality (4th ed.). Geneva, Switzerland: WHO.Google Scholar
  197. Wolfe, R. L., Lieu, N. I., Izaguirre, G., & Means, E. G. (1990). Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution, and disinfection resistance. Applied and Environmental Microbiology, 56, 451–462.Google Scholar
  198. Zacheus, O. M., Iivanainen, E. K., Nissinen, T. K., Lehtola, M. J., & Martikainen, P. J. (2000). Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Research, 34(1), 63–70.CrossRefGoogle Scholar
  199. Zacheus, O. M., Lehtola, M. J., Korhonen, L. K., & Martikainen, P. J. (2001). Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Research, 35(7), 1757–1765.CrossRefGoogle Scholar
  200. Zhang, W., & DiGiano, F. A. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: A statistical study of causative factors. Water Research, 36, 1469–1482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Civil EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations