Environmental Monitoring and Assessment

, Volume 184, Issue 10, pp 5971–5982 | Cite as

Recharge signal identification based on groundwater level observations

Article

Abstract

This study applied a method of the rotated empirical orthogonal functions to directly decompose the space–time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999–2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1–2 months in the study area.

Keywords

Bayesian maximum entropy Empirical orthogonal functions Potential area recharge Piezometric head Rainfall 

References

  1. Bergamino, N., Loiselle, S. A., Cozar, A., Dattilo, A. M., Bracchini, L., & Rossi, C. (2007). Examining the dynamics of phytoplankton biomass in lake Tanganyika using empirical orthogonal functions. Ecological Modelling, 204, 156–162.CrossRefGoogle Scholar
  2. Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10, 121–142.CrossRefGoogle Scholar
  3. Braun, G. M., Levine, N. S., Roberts, S. J., & Samel, A. N. (2003). A geographic information systems methodology for the identification of groundwater recharge areas in Waukesha County, Wisconsin. Environmental and Engineering Geoscience, 9, 267–278.CrossRefGoogle Scholar
  4. Brito-Castillo, L., Douglas, A. V., Leyva-Contreras, A., & Lluch-Belda, D. (2003). The effect of large-scale circulation on precipitation and streamflow in the Gulf of California continental watershed. International Journal of Climatology, 23, 751–768.CrossRefGoogle Scholar
  5. Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30, 231–250.CrossRefGoogle Scholar
  6. Christakos, G. (2000). Modern spatiotemporal geostatistics (p. 304). New York: Oxford University Press.Google Scholar
  7. Christakos, G. (2009). Epistematics: An evolutionary framework of real world problem-solving. New York: Springer.Google Scholar
  8. Christakos, G., & Hristopulos, D. T. (1998). Spatiotemporal environmental health modelling: A tractatus stochasticus (p. xviii). Boston: Kluwer. 400 pp.Google Scholar
  9. Christakos, G., Bogaert, P., & Serre, M. L. (2002). Temporal GIS: Advanced functions for field-based applications (p. 220). New York: Springer.Google Scholar
  10. Christakos, G., Olea, R. A., Serre, M. L., Yu, H.-L., & Wang, L. (2005). Interdisciplinary public health reasoning and epidemic modelling: The case of Black Death. New York: Springer.Google Scholar
  11. Christophersen, N., & Hooper, R. P. (1992). Multivariate-analysis of stream water chemical-data—The use of principal components-analysis for the end-member mixing problem. Water Resources Research, 28, 99–107.CrossRefGoogle Scholar
  12. Chu, H. J., Chang, L. C., Lin, Y. P., Wang, Y. C., & Chen, Y. W. (2010). Application of system dynamics on shallow multipurpose artificial lakes: A case study of detention pond at Tainan, Taiwan. Environmental Modeling and Assessment, 15, 211–221.CrossRefGoogle Scholar
  13. Crosbie, R. S., Binning, P., & Kalma, J. D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resources Research, 41, 1–9.CrossRefGoogle Scholar
  14. Dai, A. G., Trenberth, K. E., & Qian, T. T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5, 1117–1130.CrossRefGoogle Scholar
  15. Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13, 313–316.CrossRefGoogle Scholar
  16. Freeze, R. A., & Cherry, J. A. (1979). Groundwater, xvi, 604 pp. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  17. Gehrels, H., Peters, N. E., Hoehn, E., Jensen, K., Leibundgut, C., Griffioen, J., Webb, B., & Zaadnoordijk, W. J. (Eds.) (2001). Impact of human activity on groundwater dynamics. IAHS Publication no. 269.Google Scholar
  18. Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27, 1119–1152.CrossRefGoogle Scholar
  19. Hisdal, H., & Tallaksen, L. M. (2003). Estimation of regional meteorological and hydrological drought characteristics: A case study for Denmark. Journal of Hydrology, 281, 230–247.CrossRefGoogle Scholar
  20. Hisdal, H., & Tveito, O. E. (1992). Generation of runoff series at ungauged locations using empirical orthogonal functions in combination with kriging. Stochastic Hydrology and Hydraulics, 6, 255–269.CrossRefGoogle Scholar
  21. Hooper, R. P., Christophersen, N., & Peters, N. E. (1990). Modeling streamwater chemistry as a mixture of soilwater end-members—An application to the Panola mountain catchment, Georgia, USA. Journal of Hydrology, 116, 321–343.CrossRefGoogle Scholar
  22. Hsu, K. C., Wang, C. H., Chen, K. C., Chen, C. T., & Ma, K. W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15, 903–913.CrossRefGoogle Scholar
  23. Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development—An approach. International Journal of Remote Sensing, 24, 993–1008.CrossRefGoogle Scholar
  24. Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resources Management, 21, 427–467.CrossRefGoogle Scholar
  25. Karl, T. R., Koscielny, A. J., & Diaz, H. F. (1982). Potential errors in the application of principal component (eigenvector) analysis to geophysical-data. Journal of Applied Meteorology, 21, 1183–1186.CrossRefGoogle Scholar
  26. Kruger, A., Ulbrich, U., & Speth, P. (2001). Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Physics and Chemistry of the Earth Part B—Hydrology Oceans and Atmosphere, 26, 853–861.CrossRefGoogle Scholar
  27. Longuevergne, L., Florsch, N., & Elsass, P. (2007). Extracting coherent regional information from local measurements with Karhunen-Loeve transform: Case study of an alluvial aquifer (Rhine valley, France and Germany). Water Resources Research, 43, W04430.CrossRefGoogle Scholar
  28. McPhee, J., & Yeh, W. W. G. (2008). Groundwater management using model reduction via empirical orthogonal functions. Journal of Water Resources Planning and Management—ASCE, 134, 161–170.CrossRefGoogle Scholar
  29. Mondal, N. C., & Singh, V. S. (2004). A new approach to delineate the groundwater recharge zone in hard rock terrain. Current Science, 87, 658–662.Google Scholar
  30. Moon, S. K., Woo, N. C., & Lee, K. S. (2004). Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology, 292, 198–209.CrossRefGoogle Scholar
  31. Munoz, B., Lesser, V. M., & Ramsey, F. L. (2008). Design-based empirical orthogonal function model for environmental monitoring data analysis. Environmetrics, 19, 805–817.CrossRefGoogle Scholar
  32. North, G. R. (1984). Empirical orthogonal functions and normal modes. Journal of the Atmospheric Sciences, 41, 879–886.CrossRefGoogle Scholar
  33. Rimon, Y., Dahan, O., Nativ, R., & Geyer, S. (2007). Water percolation through the deep vadose zone and groundwater recharge: Preliminary results based on a new vadose zone monitoring system. Water Resources Research, 43, W05402.CrossRefGoogle Scholar
  34. Saraf, A. K., & Choudhury, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19, 1825–1841.CrossRefGoogle Scholar
  35. Saraf, A. K., Choudhury, P. R., Roy, B., Sarma, B., Vijay, S., & Choudhury, S. (2004). GIS based surface hydrological modelling in identification of groundwater recharge zones. International Journal of Remote Sensing, 25, 5759–5770.CrossRefGoogle Scholar
  36. Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18–39.CrossRefGoogle Scholar
  37. Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeology Journal, 14, 433–443.CrossRefGoogle Scholar
  38. Sophocleous, M. A. (1991). Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. Journal of Hydrology, 124, 229–241.CrossRefGoogle Scholar
  39. Ting, C. S., Kerh, T., & Liao, C. J. (1998). Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeology Journal, 6, 282–292.CrossRefGoogle Scholar
  40. van Doren, J. F. M., Markovinovic, R., & Jansen, J. D. (2006). Reduced-order optimal control of water flooding using proper orthogonal decomposition. Computational Geosciences, 10, 137–158.CrossRefGoogle Scholar
  41. Vermeulen, P. T. M., Heemink, A. W., & Stroet, C. B. M. T. (2004). Reduced models for linear groundwater flow models using empirical orthogonal functions. Advances in Water Resources, 27, 57–69.CrossRefGoogle Scholar
  42. Wear, B. C., & Nasstrom, J. N. (1982). Examples of extended empirical orthogonal function analysis. Monthly Weather Review, 110, 481–485.CrossRefGoogle Scholar
  43. Xu, C. C., Chen, Y. N., Hamid, Y., Tashpolat, T., Chen, Y. P., Ge, H. T., et al. (2009). Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 23, 2045–2055.CrossRefGoogle Scholar
  44. Yeh, M. S., Lin, Y. P., & Chang, L. C. (2006). Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology, 50, 101–121.Google Scholar
  45. Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58, 185–195.Google Scholar
  46. Yu, H. L., & Chu, H. J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381, 239–247.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeomaticsNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations