Environmental Monitoring and Assessment

, Volume 184, Issue 8, pp 5139–5150 | Cite as

A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India

  • Soumya Chatterjee
  • Lokendra Singh
  • Buddhadeb Chattopadhyay
  • Siddhartha Datta
  • S. K. Mukhopadhyay
Article

Abstract

Use of specific plant species in remediation of heavy metal-contaminated soil and water was a promising eco-friendly technology. The present study indicated the possibilities of phytoremediation of metal-contaminated (namely Ca, Cr, Mn, Fe, Cu, Zn, and Pb) soil by using plant species important for floriculture of East Calcutta Wetlands, a Ramsar site at the eastern fringe of Calcutta city. Plant species like sunflower (Helianthus annuus), marigold (Tagetes patula), and cock’s comb (Celocia cristata) grew on soil contaminated by industrial sludge and irrigated regularly with wastewater accumulated different metals in different plant parts in varied concentrations. Pot culture study in the laboratory setup was also done to ascertain the efficiency of these plants for ameliorating contaminated soil. It was found that general accumulation patterns of metals concerned in different plant parts were root > leaf > stem > flower. This work indicated the importance of cultivation of economically important, non-edible, ornamental plant species as an alternative cost-effective practice to remediate heavily contaminated farmlands of East Calcutta Wetlands.

Keywords

Phytoremediation Floriculture Heavy metals East Calcutta Wetlands Ramsar site Agro-soil 

Notes

Acknowledgments

Authors thankfully acknowledge UGC DAE CSR, Kolkata Center, India for financial support. Authors also express gratitude to the Director of Technical Education and the Director of Public Instructions, Government of West Bengal, India, for cooperation and necessary support.

References

  1. Alam, S., Kodama, R., Akiha, F., Kamei, S., & Kawai, S. (2006). Alleviation of manganese phytotoxicity in barley with calcium. Journal of Plant Nutrition, 29, 59–74.CrossRefGoogle Scholar
  2. Anikwe, M. A. N., & Nwobodo, K. C. A. (2002). Long term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresources Technology, 83, 241–251.CrossRefGoogle Scholar
  3. Banks, M. K., Schwab, A. P., & Henderson, C. (2006). Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62, 255–264.CrossRefGoogle Scholar
  4. Bertrand, M., & Poirier, I. (2005). Photosynthetic organisms and excess of metals. Photosynthetica, 43, 345–353.CrossRefGoogle Scholar
  5. Birge, W., Price, W. J., Shaw, J. R., Spromberg, J. A., Wiggington, A. J., & Hogstrand, C. (2000). Metal body burden and biological sensors as ecological indicators. Environmental Toxicology and Chemistry, 19, 1199–1212.CrossRefGoogle Scholar
  6. Chatterjee, S., Chattopadhyay, B., Dutta, S., & Mukhopadhyay, S. K. (2004). Possibility of heavy metal remediation in East Calcutta Wetland ecosystem using selected plant species. Journal of Industrial Leather Technology Association, LIV(4), 299–311.Google Scholar
  7. Chatterjee, S., Chattopadhyay, B., & Mukhopadhyay, S. K. (2006). Heavy metal distribution in tissues of cichlids (Oreochromis niloticus and O. mossambicus) collected from wastewater-fed fishponds in East Calcutta Wetlands, a Ramsar site. Acta Ichthyological Piscatoria, 36, 119–125.Google Scholar
  8. Chatterjee, S., Chattopadhyay, B., & Mukhopadhyay, S. K. (2007). Sequestration and localization of metals in two common wetland plants of contaminated East Calcutta Wetlands, a Ramsar site in India. Land Contamination Reclamation, 15, 437–452.CrossRefGoogle Scholar
  9. Chatterjee, S., Chattopadhyay, B., & Mukhopadhyay, S. K. (2009). Monitoring waste metal pollution at Ganga estuary via the East Calcutta Wetland areas. Environmental Monitoring and Assessment, 170, 23–31. doi:10.1007/s10661-009-1211-3.CrossRefGoogle Scholar
  10. Chatterjee, S., Singh, L., Chattopadhyay, B., Datta, S., & Mukhopadhyay, S. K. (2010). A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environmental Monitoring and Assessment, 178, 361–371. doi:10.1007/s10661-010-1695-x.CrossRefGoogle Scholar
  11. Clarkson, T. W. (1993). Molecular and ionic mimicry of toxic metals. Annual Review of Pharmacology and Toxicology, 33, 547–571.CrossRefGoogle Scholar
  12. Cobbett, C. S. (2000). Phytochelatin biosynthesis and function in heavy metal detoxification. Current Opinion in Plant Biology, 3, 211–216.Google Scholar
  13. Das, P., Samantaray, S., & Rout, G. R. (1998). Studies on cadmium toxicity in plants: a review. Environmental Pollution, 98, 29–36.CrossRefGoogle Scholar
  14. Doncheva, S., Stoyanova, Z., Georgieva, K., Nedeva, D., Dikova, R., Zehirov, G., et al. (2006). Exogenous succinate increases resistance of maize plants to copper stress. Journal of Plant Nutrition Soil Sciences, 169, 247–254.CrossRefGoogle Scholar
  15. Eaton, A. D., Clesceri, L. S., & Greenberg, A. E. (1995). Standard methods of the examination of water and wastewater (19th ed.). Washington, DC: APHA.Google Scholar
  16. Franceschi, V. R., & Nakata, P. A. (2005). Calcium oxalate in plants: formation and function. Annual Review of Plant Sciences, 56, 41–47.CrossRefGoogle Scholar
  17. Garbisu, C., Hernandez-Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17, 173–188.CrossRefGoogle Scholar
  18. Hering, J. G., & Kraemer, S. (1998). Environmental chemistry of trace-metals. In D. L. Macalady (Ed.), Perspectives in environmental chemistry (pp. 57–74). New York: Oxford University Press.Google Scholar
  19. Isaac, R. A., & Kerber, J. D. (1971). Atomic absorption and flame photometry: techniques and uses in soil and plant and water analysis. In L. M. Walsh (Ed.), Instrumental methods for analysis of soils and plant tissue (pp. 125). Madison: Soil Science Society of America.Google Scholar
  20. Kitao, M., Lei, T. T., & Koike, T. (1997). Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiologia Plantarum, 101, 249–256.CrossRefGoogle Scholar
  21. Lasat, M. M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefGoogle Scholar
  22. Lidon, F. C., & Henriques, F. S. (1992). Copper toxicity in rice: diagnostic criteria and effect on tissue Mn and Fe. Soil Science, 154, 130–135.CrossRefGoogle Scholar
  23. Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.CrossRefGoogle Scholar
  24. Lu, X., Kruatrachue, M., Pokethitiyook, P., & Homyok, K. (2004). Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Science of Asia, 30, 93–103.CrossRefGoogle Scholar
  25. Madejón, P., Murillo, J. M., Marañón, T., Cabrera, F., & Soriano, M. A. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Science of the Total Environment, 307, 239–257.CrossRefGoogle Scholar
  26. Marschner, H. (1995). Mineral nutrition for higher plants (2nd ed.). London: Academic.Google Scholar
  27. McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering/Biotechnology, 78, 97–123.CrossRefGoogle Scholar
  28. Memon, A. R., Ito, S., & Yatazawa, M. (1979). Absorption ad accumulation of iron, manganese, and copper in plants in temperate forest of central Japan. Soil Sciences of Plant Nutrition, 25, 611–620.CrossRefGoogle Scholar
  29. Memon, A. R., Aktoprakligil, D., Ozdemir, A., & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.Google Scholar
  30. Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environment of Health Personal, 116, 278–283.CrossRefGoogle Scholar
  31. Mengel, K., & Kirkby, E. A. (1987). Principles of plant nutrition (4th ed.). Bern: International Potash Institute.Google Scholar
  32. Merdy, P., Huclier, S., & Koppal, L. K. (2006). Modelling metal–particle interactions with an emphasis on natural organic matter. Environmental Science and Technology, 15, 7459–7466.CrossRefGoogle Scholar
  33. Okoronkwo, N. E., Igwe, J. C., & Onwuchekwa, E. C. (2005). Risk and health implications of polluted soils for crop production. African Journal of Biotechnology, 4, 1521–1524.Google Scholar
  34. Paschke, M. W., Perry, L. G., & Redente, E. F. (2006). Zinc toxicity thresholds for reclamation forb species. Water, Air Soil Pollution, 170, 317–330.CrossRefGoogle Scholar
  35. Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Journal of Environmental Experimental Botany, 35, 525–545.CrossRefGoogle Scholar
  36. Rauser, W. E., & Curvetto, N. R. (1980). Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature, 287, 563–564.CrossRefGoogle Scholar
  37. Robinson, N. J., Tommey, A. M., Kuske, C., & Jackson, P. J. (1993). Plant metallothioneins. Biochemical Journal, 295, 1–10.Google Scholar
  38. Robinson, N. J., Wilson, J. R., Turner, J. S., Fordham-Skelton, A. P., & Groom, Q. J. (1997). Metal–gene-interactions in roots: metallothionein-like genes and iron reductases. In H. M. Anderson, P. P. W. Barlow, D. T. Clarkson, M. B. Jackson, & P. R. Shewry (Eds.), Plant roots—from cells to systems (pp. 117–130). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  39. Schwab, A. P., Yinghong, H. E., & Banks, M. K. (2005). The influence of organic ligands on the retention of lead in soil. Chemosphere, 61, 856–866.CrossRefGoogle Scholar
  40. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.Google Scholar
  41. Smith, C. J., Hopmans, P., & Cook, F. J. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with untreated urban effluents in Australia. Environmental Pollution, 94, 317–323.CrossRefGoogle Scholar
  42. Sunda, W. G., & Huntsman, S. A. (1983). Effect of competitive interaction between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. Limnology and Oceanography, 28, 923–924.CrossRefGoogle Scholar
  43. Vousta, D., Grimanins, A., & Sammara, C. (1996). Trace elements in vegetable grown in an industrial area in relation to soil and air particle matter. Environmental Pollution, 94, 325–335.CrossRefGoogle Scholar
  44. Wainwright, S. J., & Woolhouse, H. J. (1975). Physiological mechanisms of heavy metal tolerance in plants. In M. J. Chadwick & G. T. Goodman (Eds.), The ecology of resource degradation and renewal (pp. 231–257). Oxford: Blackwell.Google Scholar
  45. Welz, B., & Sperling, M. (1999). Atomic absorption spectrometry (3rd ed.). Weinheim: Wiley-VCH.Google Scholar
  46. Xian, X. (1989). Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil, 113, 257–264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Soumya Chatterjee
    • 1
  • Lokendra Singh
    • 1
  • Buddhadeb Chattopadhyay
    • 2
  • Siddhartha Datta
    • 3
  • S. K. Mukhopadhyay
    • 4
  1. 1.Defence Research LaboratoryTezpurIndia
  2. 2.Government College of Engineering and Leather TechnologyKolkataIndia
  3. 3.Department of Chemical EngineeringJadavpur UniversityKolkataIndia
  4. 4.Hooghly Mohsin CollegeChinsurahIndia

Personalised recommendations