Environmental Monitoring and Assessment

, Volume 184, Issue 8, pp 4999–5008 | Cite as

Trends of natural organic matter concentrations in river waters of Latvia

  • Ilga Kokorite
  • Maris Klavins
  • Valery Rodinov
  • Gunta Springe
Article

Abstract

This study revealed significant (P < 0.1and P < 0.05) increasing trends of total organic carbon (TOC) and water colour in most of the studied Latvian rivers during the last decade. However, over longer time periods, there were pronounced oscillations of TOC concentrations, similar to patterns of long-term changes of river discharge regime. On a yearly basis, there was a positive correlation between parameters of organic matter concentration and discharge in all selected rivers (rS = 0.540–0.803; P < 0.01). The impact of discharge on concentrations of organic matter could be masked by other factors, such as changes in precipitation, biological processes, soil types or land use.

Keywords

TOC Water colour Latvia Discharge Trend analysis 

References

  1. Apsite, E., & Klavins, M. (1998). Assessment of the changes of COD and color in rivers of Latvia during the last twenty years. Environment International, 24(5/6), 637–643.CrossRefGoogle Scholar
  2. Arvola, L., Räike, A., Kortelainen, P., & Järvinen, M. (2004). The effect of climate and landuse on TOC concentrations and loads in Finnish rivers. Boreal Environment Research, 9, 381–387.Google Scholar
  3. Clair, T. A., Dennis, I. F., Vet, R., & Laudon, H. (2008). Long-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada. Biogeochemistry, 87, 83–97.CrossRefGoogle Scholar
  4. Clark, J. M., Lane, S. N., Chapman, P. J., & Adamson, J. K. (2008). Link between DOC in near surface peat and stream water in an upland catchment. Science of the Total Environment, 404, 308–315. doi:10.1016/j.scitotenv.2007.11.002.CrossRefGoogle Scholar
  5. Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., & Malcolm, I. A. (2008). Influence of hydrology and seasonality on DOC exports from three upland catchment. Biogeochemistry, 90, 93–113.CrossRefGoogle Scholar
  6. Depetris, P. J., & Kempe, S. (1993). Carbon dynamics and sources in the Parana River. Limnology and Oceanography, 38(2), 382–395.CrossRefGoogle Scholar
  7. Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., et al. (2008). Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 14, 1–8.CrossRefGoogle Scholar
  8. European Environment Agency (2008) Waterbase rivers http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=984 Accessed 28 August 2008.
  9. Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137, 55–71.CrossRefGoogle Scholar
  10. Fenner, N., Freeman, C., Lock, M. A., Harmens, H., Reynolds, B., & Sparks, T. (2007). Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science and Technology, 41, 3146–3152.CrossRefGoogle Scholar
  11. Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430, 195–198.CrossRefGoogle Scholar
  12. Gergel, S. E., Turner, M. G., & Kratz, T. K. (1999). Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecological Applications, 9(4), 1377–1390.CrossRefGoogle Scholar
  13. Hagedorn, F., & Machwitz, M. (2007). Controls of dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2. Soil Biology & Biochemistry, 39, 1759–1769.CrossRefGoogle Scholar
  14. Hejzlar, J., Dubrovsky, M., Buchtele, J., & Ružička, M. (2003). The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Mališe River, South Bohemia). Science of the Total Environment, 310, 143–152.CrossRefGoogle Scholar
  15. Hirsh, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20, 727–732.CrossRefGoogle Scholar
  16. Hirsh, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121.CrossRefGoogle Scholar
  17. Hongve, D., Riise, G., & Kristiansen, J. F. (2004). Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—a result of increased precipitation? Aquatic Sciences, 66, 231–238.CrossRefGoogle Scholar
  18. Jaagus, J., Briede, A., Rimkus, E., & Remm, K. (2010). Precipitation pattern in the Baltic countries under the influence of large-scale atmospheric circulation and local landscape factors. International Journal of Climatology, 30(5), 705–720.Google Scholar
  19. Jager, D. F., Wilmking, M., & Kukkonen, J. V. K. (2009). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: evidence from one dry and one wet growing season. Science of the Total Environment, 407, 1373–1382. doi:10.1016/j.scitotenv.2008.10.005.CrossRefGoogle Scholar
  20. Klavins, M., & Rodinov, V. (2008). Long-term changes of river discharge regime in Latvia. Hydrology Research, 39(2), 133–141.CrossRefGoogle Scholar
  21. Klavins, M., Rodinovs, V., & Kokorite, I. (2002). Chemistry of surface waters in Latvia. Riga: LU.Google Scholar
  22. Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics, 13, 71–84.CrossRefGoogle Scholar
  23. Mattsson, T., Kortelainen, P., & Räike, A. (2005). Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry, 76, 373–394.CrossRefGoogle Scholar
  24. Pettine, M., Patrolecco, L., Camusso, M., & Crescenzio, S. (1998). Transport of carbon and nitrogen to the Northern Adriatic Sea by the Po River. Estuarine, Coastal and Shelf Science, 46, 127–142.CrossRefGoogle Scholar
  25. Reihan, A., Koltsova, T., Kriauciuniene, J., Lizuma, L., & Meilutyte-Barauskiene, D. (2007). Changes in water discharges of the Baltic states rivers in the 20th century and its relation to climate change. Nordic Hydrology, 38(4/5), 401–412.CrossRefGoogle Scholar
  26. Roulet, N., & Moore, T. R. (2006). Browning the waters. Nature, 414(7117), 283–284.CrossRefGoogle Scholar
  27. Standard Methods for Chemical Analysis of Surface Waters. (1973). Leningrad: Gidromeoizdat (in Russian).Google Scholar
  28. Terauda, E., & Nikodemus, O. (2007). Sulphate and nitrate in precipitation and soil water in pine forests in Latvia. Water, Air and Soil Pollution: Focus, 7, 77–84.CrossRefGoogle Scholar
  29. Vuorenmaa, J., Forsius, M., & Mannio, J. (2006). Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Science of the Total Environment, 365, 47–65.CrossRefGoogle Scholar
  30. Westerhoff, P., & Anning, D. (2000). Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. Journal of Hydrology, 236, 202–222.CrossRefGoogle Scholar
  31. Worrall, F., & Burt, T. P. (2007). Trends in DOC concentration in Great Britain. Journal of Hydrology, 346, 81–92. doi:10.1016/j.jhydrol.2007.08.021.CrossRefGoogle Scholar
  32. Worrall, F., Burt, T., & Shedden, R. (2003). Long term records of riverine dissolved organic matter. Biogeochemistry, 64, 165–178.CrossRefGoogle Scholar
  33. Xiang, W., & Freeman, C. (2009). Annual variation of temperature sensitivity of soil organic carbon decomposition in North peatlands: implications for thermal responses of carbon cycling to global warming. Environmental Geology, 58, 499–508.CrossRefGoogle Scholar
  34. Yallop, A. R., & Clutterbuck, B. (2009). Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity. Science of the Total Environment, 407, 3803–3813.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ilga Kokorite
    • 1
  • Maris Klavins
    • 1
  • Valery Rodinov
    • 1
  • Gunta Springe
    • 1
  1. 1.Department of Environmental ScienceUniversity of LatviaRigaLatvia

Personalised recommendations