Environmental Monitoring and Assessment

, Volume 184, Issue 8, pp 4655–4669 | Cite as

Mapping forest composition from the Canadian National Forest Inventory and land cover classification maps

  • Denys YemshanovEmail author
  • Daniel W. McKenney
  • John H. Pedlar


Canada’s National Forest Inventory (CanFI) provides coarse-grained, aggregated information on a large number of forest attributes. Though reasonably well suited for summary reporting on national forest resources, the coarse spatial nature of this data limits its usefulness in modeling applications that require information on forest composition at finer spatial resolutions. An alternative source of information is the land cover classification produced by the Canadian Forest Service as part of its Earth Observation for Sustainable Development of Forests (EOSD) initiative. This product, which is derived from Landsat satellite imagery, provides relatively high resolution coverage, but only very general information on forest composition (such as conifer, mixedwood, and deciduous). Here we link the CanFI and EOSD products using a spatial randomization technique to distribute the forest composition information in CanFI to the forest cover classes in EOSD. The resultant geospatial coverages provide randomized predictions of forest composition, which incorporate the fine-scale spatial detail of the EOSD product and agree in general terms with the species composition summaries from the original CanFI estimates. We describe the approach and provide illustrative results for selected major commercial tree species in Canada.


National Forest Inventory Land cover classification Stochastic prediction Species cover Canada Stand volume Forest composition Tree species 



This work was funded by Natural Resources Canada, Canadian Forest Service. Authors extend their gratitude and thanks to Mark Gillis and Katja Power (Pacific Forestry Centre, Victoria, BC) for providing technical support with CanFI data, and Kevin Lawrence and Darren Allen (Great Lakes Forestry Centre, Sault Ste. Marie, ON) for their help with preparing a seamless EOSD land cover dataset. Steen Magnussen (Pacific Forestry Centre, Victoria, BC) also provided valuable comments on an earlier version of the manuscript. Thanks also to the journal reviewers for suggestions that improved the manuscript. Any errors remain the responsibility of the authors.


  1. Freeman, E., & Moisen, G. (2007). Evaluating kriging as a tool to improve moderate resolution maps of forest biomass. Environmental Monitoring and Assessment, 128, 395–410.CrossRefGoogle Scholar
  2. Gillis, M. D. (2001). Canada’s national forest inventory, responding to current information needs. Environmental Monitoring and Assessment, 67, 121–129.CrossRefGoogle Scholar
  3. Gillis, M. D., Brierley, T. T., & Omule, A. Y. (2005). Monitoring Canada’s forests: The National Forest Inventory. The Forestry Chronicle, 81, 214–221.Google Scholar
  4. Gillis, M. D., Boudewyn, P., Power, K., & Russo, G. (2010). Canada. In E. Tomppo, D. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories. Pathways for common reporting (pp. 97–111). New York: Springer.Google Scholar
  5. Hansen, M.H., & Wendt, D.G. (2000). Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory. In: R.E. McRoberts, G.A. Reams, & P.C. Van Deusen (Eds.). Proceedings of the First Annual Forest Inventory and Analysis Symposium, San Antonio, TX, 2–3 November 1999. USDA Forest Service General Technical Report NC-213 (pp. 20–27).Google Scholar
  6. Jacobs, D.M., & Rudis, V.A. (2005). Providing confidence in regional maps in predicting where nonnative species are invading the forested landscape. In McRoberts, R.E., Reams, G.A., Van Deusen, P.C., McWilliams, W.H., and Cieszewski, C.J. (Eds). Proceedings of the 4th Annual Forest Inventory and Analysis Symposium; 2002 Nov 19–21; New Orleans, LA (pp. 17–19). General Technical Report NC-252. USDA Forest Service, NC Research Station, St. Paul, MNGoogle Scholar
  7. LaCroix, J. J., Ryu, R., Zheng, D., & Chen, J. (2006). Simulating fire spread with landscape management scenarios. Forest Science, 52, 522–529.Google Scholar
  8. LeMaire, G., Davi, H., Soudani, K., Francoise, C., LeDantec, V., & Dufrene, E. (2005). Modeling annual production and carbon fluxes of a large managed temperate forest using forest inventories, satellite data and field measurements. Tree Physiology, 25, 859–872.CrossRefGoogle Scholar
  9. Little, E.L. Jr. (1971). Atlas of United states Trees. Volume 1. Conifers and Important Hardwoods. USDA Forest Service, Timber Management Research Division, Washington, DC. Miscellaneous Publication No. 1146.Google Scholar
  10. Liu, J., Liu, S., Loveland, T. R., & Tieszen, L. L. (2008). Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics. Ecological Modelling, 219, 361–372.CrossRefGoogle Scholar
  11. Lowe, T., Cieszewski, C.J., Zasada, M., & Zawadzki, J. (2003). Distributing FIA information onto segmented Landsat Thematic Mapper images stratified with industrial ground data. In McRoberts, R.E., Reams, G.A., Van Deusen, P.C., McWilliams, W.H., & Cieszewski, C.J. (Eds). Proceedings of the 4th Annual Forest Inventory and Analysis Symposium; 2002 Nov 19–21; New Orleans, LA (pp. 111–116). General Technical Report NC-252. USDA Forest Service, NC Research Station, St. Paul, MN.Google Scholar
  12. McKenney, D. W., Pedlar, J., Hutchinson, M., Lawrence, K., & Campbell, K. (2007). Potential impacts of climate change on the distribution of North American trees. Bioscience, 57, 939–948.CrossRefGoogle Scholar
  13. McRoberts, R. E., Wendt, D. G., Nelson, M. D., & Hansen, M. H. (2002). Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates. Remote Sensing of Environment, 81, 36–44.CrossRefGoogle Scholar
  14. McRoberts, R. E., Gormanson, D. D., & Hansen, M. H. (2005). Can a land cover change map be used to increase the precision of forest inventory estimates of change in forest area, volume growth, and mortality. In C. Kleinn, J. Nieschulze, & B. Sloboda (Eds.), Proceedings of the 1st GIS and Remote Sensing Days—Environmental Studies, Göttingen, Germany, 7–8 October 2004 (pp. 63–73). Frankfurt am Main: Sauerländer.Google Scholar
  15. McRoberts, R. E., Holden, G. R., Nelson, M. D., Liknes, G. C., & Gormanson, D. D. (2006). Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service. Canadian Journal of Forest Research, 36, 2968–2980.Google Scholar
  16. Mora, B. B., Wulder, M. A., & White, J. C. (2010). Identifying leading species using tree crown metrics derived from very high spatial resolution imagery in a boreal forest environment. Canadian Journal of Remote Sensing, 36, 332–344.CrossRefGoogle Scholar
  17. Nadeau, L. B., & Englefield, P. P. (2006). Fine-resolution mapping of wildfire fuel types for Canada: fuzzy logic modeling for an Alberta pilot area. Environmental Monitoring and Assessment, 120, 127–152.CrossRefGoogle Scholar
  18. Natural Resources Canada. (2010). The State of Canada’s Forests—Annual Report 2010. Ottawa: Natural Resources Canada.Google Scholar
  19. Nilsson, M., Folving, S., Kennedy, P., Puumalainen, J., Chirici, G., Corona, P., Marchetti, M., Olsson, H., Ricotta, C., Ringvall, A., Ståhl, E. & Tomppo, E. (2003). Combining remote sensing and field data for deriving unbiased estimates of forest parameters over large regions. In: Corona, P., Köhl, M., and Marchetti, M. (Eds). Advances in forest inventory for sustainable forest management and biodiversity monitoring (pp. 19–32). Boston: Kluwer.Google Scholar
  20. Ontario Ministry of Natural Resources (1998). Specifications for Automating Forest Resource Inventory for the Ontario Ministry of Natural Resources. Sault Ste. Marie, ON: Ontario Ministry of Natural Resources, Information Management & Systems Branch.Google Scholar
  21. Polson, J.E., Ens, D.R., & Whiting, J.W. (1989). Comparison of satellite forest cover maps to traditional forest inventory maps. In: Geoscience and Remote Sensing Symposium, IGARSS’89. 12th Canadian Symposium on Remote Sensing, vol. 4 (pp. 2401–2404).Google Scholar
  22. Poso, S., Paananen, R., & Simila, M. (1987). Forest inventory by compartments using satellite imagery. Silva Fennica, 21, 69–94.Google Scholar
  23. Riel, W. G., Fall, A., Shore, T. L., & Safranyik, L. A. (2004). A spatio-temporal simulation of mountain pine beetle impacts on the landscape. In T. L. Shore, J. E. Brooks, & J. E. Stone (Eds.), Mountain Pine Beetle Symposium: Challenges and Solutions; 2003 October 30–31, Kelowna, BC, Canada, (pp. 106–113). Information Report BC-X-399. Victoria, BC: Pacific Forestry Centre.Google Scholar
  24. Sayn-Wittgenstein, L. (1978). Recognition of tree species on aerial photographs. Ottawa: Canadian Forest Service.Google Scholar
  25. Tang, G., Beckage, B., Smith, B., & Miller, P.A. (2010). Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere 1, article 18.Google Scholar
  26. Thompson, I. D., Maher, S. C., Rouillard, D. P., Fryxell, J. M., & Baker, J. A. (2007). Accuracy of forest inventory mapping: some implications for boreal forest management. Forest Ecology and Management, 252, 208–221.CrossRefGoogle Scholar
  27. Wulder, M. (2000). Large Area Remote Sensing Land Cover Mapping Projects. Canadian Forest Service, Natural Resources Canada. Available from: Accessed 20 June 2010.
  28. Wulder, M., & Nelson, T. (2003). EOSD Land Cover Classification Legend Report. Victoria: Canadian Forest Service Pacific Forestry Centre.Google Scholar
  29. Wulder, M. A., Dechka, J. A., Gillis, M. A., Luther, J. E., Hall, R. J., Beaudoin, A., et al. (2003). Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. The Forestry Chronicle, 79(6), 1–9.Google Scholar
  30. Wulder, M. A., White, J. C., Luther, J. E., Strickland, G., Remmel, T. K., & Mitchell, S. (2006). Use of vector polygons for the accuracy assessment of pixel-based land cover maps. Canadian Journal of Remote Sensing, 32, 268–279.CrossRefGoogle Scholar
  31. Wulder, M. A., White, J. C., Magnussen, S. S., & McDonald, S. S. (2007). Validation of a large area land cover product using purpose-acquired airborne video. Remote Sensing of Environment, 106, 480–491.CrossRefGoogle Scholar
  32. Wulder, M. A., White, J. C., Cranny, M., Hall, R. J., Luther, J. E., Beaudoin, A., et al. (2008). Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Canadian Journal of Remote Sensing, 34, 549–562.CrossRefGoogle Scholar
  33. Yemshanov, D., Koch, F. H., McKenney, D. W., Downing, M. C., & Sapio, F. (2009). Mapping invasive species risks with stochastic models: a cross-border United States–Canada application for Sirex noctilio Fabricius. Risk Analysis, 29, 868–884.CrossRefGoogle Scholar
  34. Yemshanov, D., Koch, F. H., Ben-Haim, Y., & Smith, W. (2010). Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. Journal of Environmental Management, 91, 2535–2546.CrossRefGoogle Scholar
  35. Zhou, X., Peng, C., Dang, Q., Chen, J., & Parton, S. (2005). Predicting forest growth and yield in northeastern Ontario using the process-based model of TRIPLEX1.0. Canadian Journal of Forest Research, 35, 2268–2280.CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  • Denys Yemshanov
    • 1
    Email author
  • Daniel W. McKenney
    • 1
  • John H. Pedlar
    • 1
  1. 1.Natural Resources Canada, Canadian Forest ServiceGreat Lakes Forestry CentreSault Ste. MarieCanada

Personalised recommendations