Environmental Monitoring and Assessment

, Volume 184, Issue 7, pp 4575–4590 | Cite as

Urban daily life routines and human exposure to environmental discomfort

  • I. Schnell
  • O. PotchterEmail author
  • Y. Yaakov
  • Y. Epstein
  • S. Brener
  • H. Hermesh


This study suggests a shift in focus from studying environmental discomfort in urban strategic stations, from which average results for the city or specific results for selected sites are deduced, and from measuring environmental conditions in fixed monitoring stations to a study in which we monitor, with mobile portable sensors, the exposure of people to environmental sources of discomfort while performing their daily life activities. Significant variations in sense of discomfort were measured in this study, and almost half of this variability was found to be explained while four independent environmental variables were considered: air quality (concentrations of CO), noise level, climatic variables (thermal load), and social loads. The study conducted in the city of Tel Aviv, which suffers from hot, humid summers and cool winters, and noise levels that reach the average levels of 85 dB, and relatively lower levels of exposure to the other potential stressors. These levels of combined exposures result in moderate levels of discomfort for young, healthy people once they experience the more stressing environments in the city. It is shown also that noise from other people is the most salient source of discomfort in Tel Aviv. Levels of discomfort accumulate during the working hours, either due to the impact of social loads or noise, but the subjects showed good coping abilities that enabled them to recover in late afternoons. It seems that thermal load does not have immediate impact, but rather cumulative ones, mainly during transitional seasons when subjects are less adaptive to extreme changes in weather.


Environmental stressors Environmental discomfort Personal exposure Spatial lifestyle Environmental aspect of spatial lifestyle 



The authors thank the Israeli Science Foundation for supporting this study (ISF, grant 997/03). The authors thank Tali Hamberg, Sheli Weeg, and Shay Gendel for their assistance in the research. The authors thank all the students who took part in the field survey.


  1. Adamms, H. S., Nieuwenhuijsen, M. J., Colvile, R. N., McMullen, M. A. S., & Khandelwal, P. (2001). Fine particle (PM2.5) personal exposure levels in transport microenvironment. Science of the Total Environment, 279(1–3), 29–44. doi: 10.1016/S0048-9697(01)00723-9.CrossRefGoogle Scholar
  2. Buttimer, A. (1980). Social space and the planning of residential areas. In A. Buttimer & D. Seanon (Eds.), The Human Experience of Space and Place (pp. 34–56). NY: St. Martin Press.Google Scholar
  3. Candas, V., & Dufour, A. (2005). Thermal comfort: Multisensory interactions? Journal of Physiological Anthropology and Applied Human Science, 24, 33–36. doi: 10.2114/jpa.24.33.CrossRefGoogle Scholar
  4. Clausen, G., Carrick, L., Fanger, P. O., Kim, S. W., Poulsen, T., & Rindel, J. H. (1993). A comparative study of discomfort caused by indoor air pollution, thermal load and noise. Indoor Air, 3(4), 255. doi: 10.1111/j.1600-0668.1993.00006.x.CrossRefGoogle Scholar
  5. De-Certeau, D. (1982). The practice of everyday life. California: California University Press.Google Scholar
  6. Di Marco, G. S., Kephalopoulos, S., Ruuskanen, J., & Jantunen, M. (2005). Personal carbon monoxide exposure in Helsinki, Finland. Atmospheric Environment, 39(15 SPEC. ISS), 2697–2707. doi: 10.1016/j.atmosenv.2004.07.039.Google Scholar
  7. Duci, A., Chaloulakou, A., & Spyrellis, A. (2003). Exposure to carbon monoxide in the Athens urban area during commuting. The Science of the Total Environment, 309(1–3), 47–58. doi: 10.1016/S0048-9697(03)00045-7.CrossRefGoogle Scholar
  8. Epstein, Y., Heled, Y., Moran, D., & Shapiro, Y. (2000). Prediction of physiological response from mathematical models. Journal of the Israel Medical Association, 138(9), 713–719.Google Scholar
  9. Evance, G. (1983). Environmental stress. Cambridge: Cambridge University Press.Google Scholar
  10. Fang, L., Wyon, D. P., Clausen, G., & Fanger, P. O. (2004). Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air, 14, 74–81. doi: 10.1111/j.1600-0668.2004.00276.x.CrossRefGoogle Scholar
  11. Fanger, P. O. (1972). Thermal comfort: Analysis and applications in environmental engineering. New York: McGraw-Hill.Google Scholar
  12. Fanger, P. O., Breum, N. O., & Jerking, E. (1977). Can colour and noise influence man’s thermal comfort? Ergonomics, 20, 11–18.CrossRefGoogle Scholar
  13. Federspiel, C. C., Liu, G., Lahiff, M., Faulkner, D., Dibartolomeo, D. L., Fisk, W. J., et al. (2002). Worker performance and ventilation: Analyses of individual data for call-center workers. Berkeley, CA: Indoor Environment Department, Lawrence Berkeley National Laboratory.CrossRefGoogle Scholar
  14. Giddens, A. (1991). Modernity and self-identity: Self and society in the late modern age. Stanford, California: Stanford University Press.Google Scholar
  15. Gilboa, S. (2007) The shopping mall as a place in the late modern age. Ph.D. Dissertation, Geography and human environment. Tel Aviv University, Tel AvivGoogle Scholar
  16. Givoni, B., & Goldman, R. F. (1972). Predicting rectal temperature response to work environment and clothing. Journal of Applied Physiology, 32, 812–822.Google Scholar
  17. Griffiths, I. D., & Boyce, P. R. (1971). Performance and thermal comfort. Ergonomics, 14, 457–468.CrossRefGoogle Scholar
  18. Gullver, J., & Briggs, D. J. (2004). Personal exposure to particulate air pollution in transport microenvironment. Atmospheric Environment, 38(1), 1–8. doi: 10.1016/j.atmosenv.2003.09.036.CrossRefGoogle Scholar
  19. Hagerstrand, T. (1975). Space, time and human conditions. In A. Karlqvist, Lundqvist, & L. Snickars (Eds.), Dynamic Allocation of Urban Space (pp. 123–132). Farnborough: Saxon House.Google Scholar
  20. Hancock, P. A., & Pierce, J. O. (1985). Combined effects of heat and noise on human performance: A review. American Industrial Hygiene Association journal, 46, 555–566.CrossRefGoogle Scholar
  21. Hanson, S., & Hanson, P. (1980). Gender and urban activity patterns in Uppsala, Sweden. Geographical Review, 70(3), 291–299.CrossRefGoogle Scholar
  22. Höppe, P. (1984). Die Energiebilanz des Menschen. Wissenschaftliche Mitteilungen des Meteorologischen Institutes der Universität München, 49.Google Scholar
  23. Höppe, P. (1999). The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71–75. doi: 10.1007/s004840050118.CrossRefGoogle Scholar
  24. Ising, H., Babisch, W., & Kruppa, B. (1999). Noise-induced endocrine effects and cardiovascular risk. Noise Health, 1, 37–48.Google Scholar
  25. Jendritzky, G., Menz, G., Schirmer, H., Schmidt-Kessen, W. (1990). Methodik zur räumlichen Bewertung der thermischen Komponente im Bioklima des Menschen. Beiträge der Akademie für Raumforschung und Landesplanung, Bd. 114, Hannover.Google Scholar
  26. Kaur, S., Nieuwenhuijsen, M., & Colivile, R. N. (2005). Personal exposure of street canyon intersection users to PM 2.5 ultrafine particle counts and carbon monoxide in Central London, UK. Atmospheric Environment, 39, 3629–3641. doi: 10.1016/j.atmosenv.2005.02.046.CrossRefGoogle Scholar
  27. Kiecolt-Glaser, J. K., Marucha, P. T., Malarkey, W. B., Mercado, A. M., & Glaser, R. (1995). Slowing of wound healing by psychological stress. Lancet, 346, 1194–1196. doi: 10.1016/S0140-6736(95)92899-5.CrossRefGoogle Scholar
  28. Kirstel-Boneh, E., Melamed, S., Harari, G., & Green, D. (1995). Acute and chronic effects of noise exposure on blood pressure and heart rate among industrial employees: The Cordis Study. Archives of Environmental Health, July–August, 50(4), 245Google Scholar
  29. Kjellberg, A., & Landström, U. (1994). Noise in the office: Part II—The scientific basis (knowledge base) for the guide. International Journal of Industrial Ergonomics, 14, 93–118. doi: 10.1016/0169-8141(94)90008-6.CrossRefGoogle Scholar
  30. Kjellberg, A., Landström, U., Tesarz, M., Söderberg, L., & Åkerlund, E. (1996). The effects of nonphysical noise characteristics, ongoing task and noise sensitivity on annoyance and distraction due to noise at work. Journal of Environmental Psychology, 16, 123–136. doi: 10.1006/jevp.1996.0010.CrossRefGoogle Scholar
  31. Lefevre, H. (1971). The production of space. New York: Prentice Hall.Google Scholar
  32. Meese, G. B., Kok, R., Lewis, M. I., & Wyon, D. P. (1982). Effects of moderate cold and heat stress on factory workers in Southern Africa. 2, Skill and performance in the cold. South African Journal of Science, 78, 189–197.Google Scholar
  33. Melamed, S., Kushnir, T., & Shirom, A. (1992). Burnout and risk factors for cardiovascular diseases. Behavioral Medicine, 18, 53–60.CrossRefGoogle Scholar
  34. Milton, D., Glencross, P., & Walters, M. (2000). Risk of sick-leave associated with outdoor air supply rate, humidification and occupants complaints. Indoor Air, 10, 212–221. doi: 10.1034/j.1600-0668.2000.010004212.x.CrossRefGoogle Scholar
  35. Moran, D., Epstein, Y., & Keren, G. (1995). Calculation of mean arterial pressure during exercise as a function of heart rate. Applied Human Science, 14, 293–295.Google Scholar
  36. Moran, D., Hetzeroni, B., Horowitz, M. (1996). Thermo regularity and cardiovascular response to rapid changes in environmental conditions. Proceedings of the 7th Conference of Environmental Ergonomic, Jerusalem, Israel, pp. 97–100.Google Scholar
  37. Moran, D., Shitzer, A., & Pandolf, K. B. (1998). Physiological strain index to evaluate heat stress. American Journal of Physiology, 275, 129–134.Google Scholar
  38. Oseland, N. A. (1995). Predicted and reported thermal sensation in climate chambers, offices and homes. Energy and Buildings, 23(2), 105–115. doi: 10.1016/0378-7788(95)00934-5.CrossRefGoogle Scholar
  39. Pellerin, N., & Candas, V. (2003). Effects of steady-state noise and temperature conditions on environmental perception and acceptability. Indoor Air, 14, 129–136. doi: 10.1046/j.1600-0668.2003.00221.x.CrossRefGoogle Scholar
  40. Pred, A. (1989). On paths and projects: Individual behavior and its social context. In K. R. Cox & G. Golledge (Eds.), Behavioral Problems in Geography Revisited (pp. 223–254). New York: Methuen.Google Scholar
  41. Rashid, M., & Zimring, C. (2008). A review of the empirical literature on the relationships between indoor environment and stress in health care and office settings: Problems and prospects of sharing evidence. Environment and Behavior, 40(2), 151. doi: 10.1177/0013916507311550.CrossRefGoogle Scholar
  42. Reinikainen, L. M., & Jaakkola, J. J. (2001). Effects of temperature and humidification in the office environment. Archives of Environmental Health, 56(4), 365–368.CrossRefGoogle Scholar
  43. Schneider, F. W., Lesko, W. A., & Garrett, W. A. (1980). Helping behavior in hot, comfortable and cold temperatures: A field study. Environment and Behavior, 12, 231–240.CrossRefGoogle Scholar
  44. Schnell, I. (2004). Glocal spatial lifestyle in Tel Aviv. Research Geographic Forum, 24, 58–77.Google Scholar
  45. Schnell, I., & Benjamini, Y. (2001). The socio-spatial isolation of agents in everyday life spaces as an aspect of segregation. Annals of the Association of American Geographers, 91(4), 622–633.CrossRefGoogle Scholar
  46. Seamon, D. (1989). Humanistic and phenomenological advances in environmental design. Humanistic psychologist, 17, 280–293.CrossRefGoogle Scholar
  47. Seppanen, O. A., Fisk, W. J., & Mendell, M. J. (1999). Association of ventilation rates and CO2 concentrations with health and other responses in commercial and industrial buildings. Indoor Air, 9, 226–252.CrossRefGoogle Scholar
  48. Sohar, E. (1980). Determination and presentation of heat load in physiologically meaningful terms. Supplement to International Journal of Biometeorology, Bd, 24, 22–27.Google Scholar
  49. Soja, W. E. (1996). Third space: Journeys to Los Angeles and other imagined places. Oxford: Blackwell.Google Scholar
  50. Spielberger, C.D., Gorsuch, R.L., Lushene, R.E., Vagg, P.R., Jacobs, G.A. (1983). STAI Manual for the state–trait anxiety inventory. Plato Alto, CA: Consulting Psychologists Press.Google Scholar
  51. Stone, J., Breidenbach, S., & Heimstra, N. (1979). Annoyance response of nonsmokers to cigarette smoke. Perceptual and Motor Skills, 49, 907–916.CrossRefGoogle Scholar
  52. Toftum, J. (2002). Human response to combined indoor environment exposure. Energy and Buildings, 34(6), 601–606. doi: 10.1016/S0378-7788(02)00010-5.CrossRefGoogle Scholar
  53. Topf, M. (2000). Hospital noise pollution: An environmental stress model to guide research and clinical interventions. Journal of Advanced Nursing, 31, 520–528. doi: 10.1046/j.1365-2648.2000.01307.x.CrossRefGoogle Scholar
  54. Ulrich, R. S. (1991). Effects of interior design on wellness: Theory and recent scientific research. Journal of Health Care Interior Design, 3, 97–109.Google Scholar
  55. Vidal de la Blache, P. [1922] 1926. Principes de geographic humaine. E. de Martonne (Ed). Paris: Armand Colin. Trans. M. T. Bingham as Principles of human geography. London: Constable.Google Scholar
  56. Wang, D., Federspiel, C. C., & Arens, E. (2005). Correlation between temperature satisfaction and unsolicited complaint rates in commercial buildings. Indoor Air, 15, 13–18. doi: 10.1111/j.1600-0668.2004.00265.x.CrossRefGoogle Scholar
  57. Wijewardane, S., & Jayasinghe, M. T. R. (2008). Thermal comfort temperature range for factory workers in warm humid tropical climates. Renew. Energy, 33(9), 2057–2063. doi: 10.1016/j.renene.2007.11.009.CrossRefGoogle Scholar
  58. Witterseh, T.,Wyon, D. P., & Clausen, G. (2002). The effects of moderate heat stress and open-plan office noise distraction on office work. In Indoor Air ‘02: Proceedings of the 9th International Conference on Indoor Air Quality and Climate (Vol. 4, pp. 1084–1089), Monterey, CA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • I. Schnell
    • 1
  • O. Potchter
    • 1
    Email author
  • Y. Yaakov
    • 1
  • Y. Epstein
    • 2
  • S. Brener
    • 3
  • H. Hermesh
    • 4
  1. 1.Geography and Human Environment DepartmentTel Aviv UniversityTel AvivIsrael
  2. 2.Heller Institute of Medical Research, Sheba medical center, Tel Hashomer and the Sackler faculty of medicineTel Aviv UniversityTel AvivIsrael
  3. 3.Arava Center for Sustainable DevelopmentArava Institute for Environmental StudiesKibutz KeturaIsrael
  4. 4.Geha Mental Health Center, Outpatient Department, and Anxiety Disorders and Behaviour Therapy Unit, Petach Tikvah, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations