Environmental Monitoring and Assessment

, Volume 184, Issue 7, pp 4279–4288 | Cite as

Biogeochemistry of the Penobscot River watershed, Maine, USA: nutrient export patterns for carbon, nitrogen, and phosphorus

Article

Abstract

Watershed exports of carbon, nitrogen, phosphorus, major solutes, and suspended sediments were examined during five water years in the Penobscot River basin, which forms part of the Gulf of Maine watershed. Mean annual exports of dissolved organic carbon (DOC) in the Penobscot River were 58 kg C ha−1 year−1, whereas cumulative yearly watershed flux of DOC during the study period ranged from 8.6 to 16.1 × 1010 g C year−1 and averaged 11.7 × 1010 g C year−1. Watershed exports of total soluble N (TN) and total soluble P in the Penobscot River averaged 1.9 and 0.02 kg ha−1 year−1, respectively. Companion studies in two other major Maine rivers indicated that mean annual exports of DOC and TN in the Androscoggin River were 40 kg C ha−1 year−1 and 2.0 kg N ha−1 year−1, whereas exports in the Kennebec River were 43 kg C ha−1 year−1 and 2.2 kg N ha−1 year−1. Extrapolation of results from this investigation and a previous complementary study indicates that estuaries and coastal waters in the Gulf of Maine receive at least 1.0 × 1010 g N year−1 and 2.5 × 1011 g C year−1 in combined runoff from the four largest Maine river basins. Soluble exports of Ca + Mg + Na minus wet deposition inputs of cations in the Penobscot system were approximately 1,840 molc ha−1 year−1, which represents a minimum estimate of cation denudation from the watershed. Based on its low N and P export rates, the Penobscot River watershed represents an example of reference conditions for use as a benchmark in ecological assessments of river water quality restoration or impairment. In addition, the biogeochemical metrics from this study provide an historical baseline for analysis of future trends in nutrient exports from the Penobscot watershed as a function of changing climatic and land use patterns.

Keywords

Biogeochemistry Carbon Nitrogen Phosphorus Watershed exports Rivers Cation denudation 

References

  1. Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14, 127–138.CrossRefGoogle Scholar
  2. Alexander, R. B., Slack, J. R., Ludtke, A. S., Fitzgerald, K. K., & Schertz, T. L. (1998). Data from selected U.S. Geological Survey national stream water monitoring networks. Water Resources Research, 34, 2401–2405.CrossRefGoogle Scholar
  3. Boyer, E. W., Goodale, C. L., Jaworski, N. A., & Horwarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry, 57/58, 137–169.CrossRefGoogle Scholar
  4. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.CrossRefGoogle Scholar
  5. Clair, T. A., Pollock, T. L., & Ehrman, J. M. (1994). Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces. Global Biogeochemical Cycles, 8, 441–450.CrossRefGoogle Scholar
  6. Correll, D. L., Jordan, T. E., & Weller, D. E. (1999). Precipitation effects on sediment and associated nutrient discharges from Rhode River watersheds. Journal of Environmental Quality, 28, 1897–1907.CrossRefGoogle Scholar
  7. Craig, L., Palmer, M. A., Richardson, D. C., Filoso, S., Bernhardt, E. S., Bledsoe, B. P., et al. (2008). Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 6, 529–538.CrossRefGoogle Scholar
  8. Cronan, C. S., Piampiano, J. T., & Patterson, H. H. (1999). Influence of land use and hydrology on exports of carbon and nitrogen in a Maine river basin. Journal of Environmental Quality, 28, 953–961.CrossRefGoogle Scholar
  9. David, M. B., & Gentry, L. E. (2000). Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. Journal of Environmental Quality, 29, 494–508.CrossRefGoogle Scholar
  10. Degens, E. T., Kempe, S., & Richey, J. E. (1991). Summary: biogeochemistry of major world rivers. In E. T. Degens, S. Kempe, & J. E. Richey (Eds.), Biogeochemistry of major world rivers (pp. 323–347). New York: Wiley.Google Scholar
  11. Dillon, P. J., Molot, L. A., & Scheider, W. A. (1991). Phosphorus and nitrogen export from forested stream catchments in central Ontario. Journal of Environmental Quality, 20, 857–864.CrossRefGoogle Scholar
  12. Driscoll, C. T., Whitall, D., Aber, J., Boyer, E., Castro, M., Cronan, C., et al. (2003). Nitrogen pollution in the northeastern United States: sources, effects, and management options. BioScience, 53, 357–374.CrossRefGoogle Scholar
  13. Eaton, A. D., & Franson, M. A. H. (Eds.). (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.Google Scholar
  14. Frink, C. R. (1991). Estimating nutrient exports to estuaries. Journal of Environmental Quality, 20, 717–724.CrossRefGoogle Scholar
  15. Goolsby, D. A. (2000). Mississippi basin nitrogen flux believed to cause Gulf hypoxia. EOS Transactions AGU, 81, 321–321.CrossRefGoogle Scholar
  16. Howarth, R. W., Fruci, J. R., & Sherman, D. (1991). Imputs of sediment and carbon to an estuarine ecosystem: influence of land use. Ecological Applications, 1, 27–39.CrossRefGoogle Scholar
  17. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. In R. W. Howarth (Ed.), Nitrogen cycling in the North Atlantic Ocean and its watersheds (pp. 75–139). Boston: Kluwer.CrossRefGoogle Scholar
  18. Ittekkot, V., & Laane, R. W. P. M. (1991). Fate of riverine particulate organic matter. In E. T. Degens, S. Kempe, & J. E. Richey (Eds.), Biogeochemistry of major world rivers, Scope 42 (pp. 233–243). New York: Wiley.Google Scholar
  19. Jordan, T. E., Correll, D. L., & Weller, D. E. (1997). Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay. Journal of Environmental Quality, 26, 836–848.CrossRefGoogle Scholar
  20. Kawaguchi, T., Lewitus, A. J., Aelion, C. M., & McKellar, H. N. (1997). Can urbanization limit iron availability to estuarine algae? Journal of Experimental Marine Biology and Ecology, 213, 53–69.CrossRefGoogle Scholar
  21. Mayer, B., Boyer, E. W., Goodale, C., Jaworski, N. A., Van Breemen, N., Howarth, R. W., et al. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry, 57/58, 171–197.CrossRefGoogle Scholar
  22. McDowell, W. H., & Likens, G. E. (1988). Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley. Ecological Monographs, 58, 177–195.CrossRefGoogle Scholar
  23. Meybeck, M. (1982). Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401–450.CrossRefGoogle Scholar
  24. NADP/NTN. (2010). Annual and seasonal data summary for site ME09. National Atmospheric Deposition Program/National Trends Network. http://nadp.sws.uiuc.edu. Accessed 15 Sep 2010.
  25. NLCD (2006) National land cover data. http://www.epa.gov/mrlc/nlcd-2006.html/. Accessed 25 May 2011.
  26. Osberg, P. H., Hussey, A. M., & Boone, G. M. (1985). Bedrock geology map of Maine. Augusta: Dept. of Conservation.Google Scholar
  27. Pellerin, B. A., Kaushall, S. S., & McDowell, W. H. (2006). Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds? Ecosystems, 9, 852–864.CrossRefGoogle Scholar
  28. Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292, 86–90.CrossRefGoogle Scholar
  29. Puckett, L. J. (1995). Identifying the major sources of nutrient water pollution: a national catchment-based analysis connects nonpoint and point sources of nitrogen and phosphorus with regional land use and other factors. Environmental Science and Technology, 29, 408–414.Google Scholar
  30. Reynolds, R. J., & Johnson, N. M. (1972). Chemical weathering in the temperate glacial environment of the northern Cascade Mountains. Geochimica Cosmochimica Acta, 36, 537–554.CrossRefGoogle Scholar
  31. Schlesinger, W. H. (1991). Biogeochemistry––an analysis of global change. New York: Academic.Google Scholar
  32. Spitzy, A., & Leenheer, J. (1991). Dissolved organic carbon in rivers. In E. T. Degens, S. Kempe, & J. E. Richey (Eds.), Biogeochemistry of major world rivers, Scope 42 (pp. 213–232). New York: Wiley.Google Scholar
  33. Teland, S. A., Pocklington, R., Naidu, A. S., Romankevich, E. A., Gitelson, I. I., & Gladyshev, M. I. (1991). Carbon and mineral transport in major North American, Russian Arctic, and Siberian Rivers: the St. Lawrence, the Mackenzie, the Yukon, the arctic Alaskan rivers, the arctic basin rivers in the Soviet Union, and the Yenisi. In E. T. Degens, S. Kempe, & J. E. Richey (Eds.), Biogeochemistry of major world rivers, Scope 42 (pp. 75–104). New York: Wiley.Google Scholar
  34. Thompson, W. B., & Borns, H. W. (1985). Surficial geologic map of Maine. Augusta: Dept. of Conservation.Google Scholar
  35. Townsend, D. W. (1998). Sources and cycling of nitrogen in the Gulf of Maine. Journal of Marine Systems, 16, 283–295.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Biology and EcologyUniversity of MaineOronoUSA

Personalised recommendations