Environmental Monitoring and Assessment

, Volume 184, Issue 6, pp 3775–3787 | Cite as

Ammonia emissions from a broiler farm: spatial variability of airborne concentrations in the vicinity and impact on adjacent woodland

  • Kristina von Bobrutzki
  • Christian Ammon
  • Werner Berg
  • Peter Einert
  • Merike Fiedler
  • Hans-Joachim Müller
  • Dieter Scherer
  • Björn Strohbach


Agricultural NH3 emissions affect air quality and influence the nitrogen cycle. In the subject study, NH3 emissions from a broiler farm and the resulting atmospheric concentrations in the immediate vicinity during three growing cycles have been quantified. Additionally, vegetation along a transect in an adjacent woodland was analysed. The emissions were as high as 10 kg NH3 h−1 and the atmospheric concentrations ranged between 33 and 124 μg NH3 m−3 per week in the immediate vicinity. Measurements of the atmospheric concentrations over 7 weeks showed a substantial decline of mean concentrations (based on a 3-week average) from ∼13 to <3 μg NH3 m−3, at 45- and 415-m distance from the farm. Vegetation surveys showed that nitrophilous species flourished when they grew closest to the farm (their occurrence sank proportionately with distance). A clearly visible damage of pine trees was observed within 200 m of the farm; this illustrated the significant impact of NH3 emissions from agricultural sources on the sensitive ecosystem.


Ammonia Broiler Emission Spatial dispersion patterns Woodland flora 



The authors thank the Leibniz Institute of Agricultural Engineering Potsdam-Bornim for its financial support and providing the contact to the broiler farm. We are grateful to the farmer who encouraged the extensive measurements in and around the broiler farm. We also acknowledge the support of the Eberswalde Forestry Competence Centre (Research Institute of the Public Enterprise Forst Brandenburg) for recording data of the vegetation surveys and taking the measurements with passive samplers along a transect through the woodland. Furthermore, we wish to thank the Federal Research Institute for Rural Areas, Forestry and Fisheries in Braunschweig for the provision of passive samplers at five monitoring points around the farm with subsequent lab analyses. Special thank goes to Thorsten Hinz and Richard Eisenschmidt.


  1. Adrizal, A., Patterson, P. H., Hulet, R. M., Bates, R. M., Myers, C. A. B., Martin, G. P., et al. (2008). Vegetation buffers for fan emissions from poultry farms: 2. Ammonia, dust and foliar nitrogen. Journal of Environmental Science and Health. Part B, 43, 96–103.CrossRefGoogle Scholar
  2. Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., et al. (2001). Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35, 1905–1911.Google Scholar
  3. Aneja, V. P., Blunden, J., Roelle, P. A., Schlesinger, W. H., Knighton, R., Niyogi, D., et al. (2008). Workshop of Agricultural Air Quality: State of the Science. Atmospheric Environment, 42, 3195–3208.CrossRefGoogle Scholar
  4. Bessei, W. (2006). Welfare of broilers: A review. World's Poultry Science Journal, 62, 455–466.CrossRefGoogle Scholar
  5. Blanes-Vidal, V., Hansen, M. N., Pedersen, S., & Rom, H. B. (2008). Emissions of ammonia, methane and nitrous oxide from pig barns and slurry: Effects of rooting material, animal activity and ventilation flow. Agriculture, Ecosystems and Environment, 124, 237–244.CrossRefGoogle Scholar
  6. Brown, R. H. (1993). The use of diffusive samplers for monitoring of ambient air. Pure and Applied Chemistry, 65, 1859–1874.CrossRefGoogle Scholar
  7. Brown, R. H., & Wright, M. D. (1994). Diffusive sampling using tube-type samplers. Analyst, 119, 75–77.CrossRefGoogle Scholar
  8. Buijsman, E., Aben, J. M. M., van Elzakker, B. G., & Mennen, M. G. (1998). An automatic atmospheric ammonia network in the Netherlands set-up and results. Atmospheric Environment, 32, 317–324.CrossRefGoogle Scholar
  9. Campbell, G. W. (1988). Measurements of nitrogen dioxide concentration at rural sites in the United Kingdom using diffusion tubes. Environmental Pollution, 55, 251–270.CrossRefGoogle Scholar
  10. Clemitshaw, K. C. (2004). A review of instrumentation and measurement techniques for ground-based and airborne filed studies of gas-phase troposheric chemistry. Critical Reviews in Environmental Science and Technology, 34, 1–108.CrossRefGoogle Scholar
  11. Cocheo, C., Boaretto, C., Pagani, D., Quaglio, F., Sacco, P., Zaratin, L., et al. (2008). Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler radiello compared with active (pumped) samplers for ambient air measurements. Journal of Environmental Monitoring, 11, 297–306.CrossRefGoogle Scholar
  12. DIN-EN 13528-3 (2004). Ambient air quality—Diffusive samplers for the determination of concentrations of gases and vapours—Part 3: Guide to selection, use and maintenance. Beuth Verlag, Berlin, pp. 1–43.Google Scholar
  13. Erisman, J. W., Otjes, R., Hensen, A., Jongejan, P., van den Bulk, P., Khlystov, A., et al. (2001). Instrument development and application in studies and monitoring of ambient ammonia. Atmospheric Environment, 35, 1913–1922.CrossRefGoogle Scholar
  14. Erisman, J. W., Hensen, A., Mosquera, J., Sutton, M., & Fowler, D. (2005). Deposition monitoring networks: What monitoring is required to give reasonable estimates of ammonia/ammonium? Environmental Pollution, 135, 419–431.CrossRefGoogle Scholar
  15. Erisman, J. W., Bleeker, A., Galloway, J., & Sutton, M. A. (2007). Reduced nitrogen in ecology and the environment. Environmental Pollution, 150, 140–149.CrossRefGoogle Scholar
  16. Erisman, J. W., Bleeker, A., Hensen, A., & Vermeulen, A. (2008). Agricultural air quality in Europe and the future perspectives. Atmospheric Environment, 42, 3209–3217.CrossRefGoogle Scholar
  17. Fangmeier, A., Hadwiger-Fangmeier, A., van der Eerden, L., & Jäger, H.-J. (1994). Effects of atmospheric ammonia on vegetation—A review. Environmental Pollution, 86, 43–82.CrossRefGoogle Scholar
  18. Ferm, M. (1991). A sensitive diffusive sampler. Göteborg, Swedish Environmental Research Institute, Report L91-172.Google Scholar
  19. Ferm, M. (1998). Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutrient Cycling in Agroecosystems, 51, 5–17.CrossRefGoogle Scholar
  20. Fowler, W. J. (1982). Fundamentals of passive vapour sampling. American Laboratory, 14, 80–87.Google Scholar
  21. Fowler, D., Pitcairn, C. E. R., Sutton, M. A., Flechard, C., Loubet, B., Coyle, M., et al. (1998). The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environmental Pollution, 102(S1), 343–348.CrossRefGoogle Scholar
  22. Fowler, D., Skiba, U., Nemitz, E., Choubedar, F., Branford, D., Donovan, R., et al. (2004). Measuring aerosols and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil. Water, Air and Soil Pollution, Focus, 4, 483–499.CrossRefGoogle Scholar
  23. Gates, R. S., Casey, K. D., Wheeler, E. F., Xin, H., & Pescatore, A. J. (2008). U.S. broiler housing emissions inventory. Atmospheric Environment, 42, 3342–3350.CrossRefGoogle Scholar
  24. Hinz, T., Linke, S., Eisenschmidt, R., Müller, H.-J., & von Bobrutzki, K. (2008). Small scale dispersion of ammonia around animal husbandries. Landbauforschung Völkenrode, 58, 295–305.Google Scholar
  25. Kallweit, R., & Böttinger, A. (2001). Waldschadenserhebung (WSE, Level I). Forstliche umweltkontrolle ergebnisse aus zehnjährigen untersuchungen zur wirkung von luftverunreinigungen in Brandenburgs Wäldern (pp. 16–37). Eberswalde: Landesforstanstalt.Google Scholar
  26. Kasper, A., & Puxbaum, H. (1994). Determination of SO2, HNO3, NH3 and aerosol components at high alpine background site with a filter pack. Analytica Chimica Acta, 291, 297–304.CrossRefGoogle Scholar
  27. Kirchner, M., Braeutigam, S., Ferm, M., Haas, M., Hangartner, M., Hofschreuder, P., et al. (1999). Field intercomparison of diffusive samplers for measuring ammonia. Journal of Environmental Monitoring, 1, 259–265.CrossRefGoogle Scholar
  28. Krupa, S. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution, 124, 179–221.CrossRefGoogle Scholar
  29. Löflund, M., Kasper-Giebel, A., Stopper, S., Urban, H., Biebl, P., Kirchner, M., et al. (2002). Monitoring ammonia in urban, inner alpine and pre-alpine ambient air. Journal of Environmental Monitoring, 4, 205–209.CrossRefGoogle Scholar
  30. Mosquera, J., Monteny, G. J. & Erisman, J. W. (2005). Overview and assessment of techniques to measure ammonia emissions from animal houses: the case of the Netherlands. Environmental Pollution, 135, 381–388.Google Scholar
  31. Naiesnik, J., Zabiegala, B., Kot-Wasik, A., Partyka, M., & Wasik, A. (2005). Passive sampling and/or extraction techniques in environmental analysis: A review. Analytical and Bioanalytical Chemistry, 381, 279–301.CrossRefGoogle Scholar
  32. Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J., Sutton, M. A., Fowler, D., Munro, R. C., et al. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.CrossRefGoogle Scholar
  33. Pitcairn, C. E. R., Skiba, U. M., Sutton, M. A., Fowler, D., Munro, R. C., & Kennedy, V. (2002). Defining the spatial impacts of poultry farm ammonia emissions on species composition of adjacent woodland groundflora using Ellenberg Nitrogen Index, nitrous oxide and nitric oxide emissions and foliar nitrogen as marker variables. Environmental Pollution, 119, 9–21.CrossRefGoogle Scholar
  34. Pitcairn, C. E. R., Leith, I. D., van Dijk, N., Sheppard, L. J., Sutton, M. A., & Fowler, D. (2009). The application of transects to assess the effects of ammonia on woodland groundflora. In MA Sutton, S Reis, S Baker (Eds.), Atmospheric ammonia (pp. 49–58). Berlin: Springer.Google Scholar
  35. Pryor, S. C., Barthelmie, R. J., Sorensen, L. L., & Jensen, B. (2001). Ammonia concentrations and fluxes over a forest in the Midwestern USA. Atmospheric Environment, 35, 5645–5666.CrossRefGoogle Scholar
  36. Redwine, J. S., Lacey, R., Mukhtar, S., & Carey, J. B. (2002). Concentration and emissions of ammonia and particular matter in tunnel-ventilated broiler barns under summer conditions in Texas. ASABE, 45, 1101–1109.Google Scholar
  37. Seethapathy, S., Górecki, T., & Li, X. (2008). Passive sampling in environmental analysis. Journal of Chromatography A, 1184, 234–253.CrossRefGoogle Scholar
  38. Skiba, U., Sheppard, L., Pitcairn, C. E. R., Leith, I., Crossley, A., van Dijk, N., et al. (1998). Soil nitrous oxide and nitric oxide emissions as indicators of elevated atmospheric N deposition rates in seminatural ecosystems. Environmental Pollution, 102, 457–461.CrossRefGoogle Scholar
  39. Skiba, U., Pitcairn, C., Sheppard, L., Kennedy, V., & Fowler, D. (2004). The influence of atmospheric N deposition on nitrous oxide and nitric oxide fluxes and soil ammonium and nitrate concentrations. Water, Air and Soil Pollution, Focus, 4, 37–43.Google Scholar
  40. Skiba, U., Dick, J., Storeton-West, R., Lopez-Fernandez, S., Woods, C., Tang, S., et al. (2006). The relationship between NH3 emissions from a poultry farm and soil NO and N2O fluxes from a downwind forest. Biogeosciences, 3, 375–382.CrossRefGoogle Scholar
  41. Sutton, M. A., Pitcairn, C. E. R., & Fowler, D. (1993). The exchange of ammonia between the atmosphere and plant communities. Advantages in Ecology Research, 24, 301–393.CrossRefGoogle Scholar
  42. Sutton, M. A., Fowler, D., Burkhardt, J. K., & Milford, C. (1995). Vegetation atmosphere exchange of ammonia: canopy cycling and the impacts of elevated nitrogen inputs. Water, Air, and Soil Pollution, 85, 2057–2063.CrossRefGoogle Scholar
  43. Sutton, M. A., Milford, C., Dragosits, U., Place, C. J., Singles, R. J., Smith, R. I., et al. (1998). Dispersion, deposition and impact of atmospheric ammonia: Quantifying local budgets and spatial variability. Environmental Pollution, 102, 349–361.CrossRefGoogle Scholar
  44. TA-Luft (2002). Technical instructions on air quality control. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.
  45. Theobald, M., Dragosits, U., Place, C. J., Smith, J. U., Sozanska, M., Brown, L., et al. (2004). Modelling nitrogen fluxes at the landscape scale. Water, Air and Soil Pollution, Focus, 4, 135–142.CrossRefGoogle Scholar
  46. Thöni, L., Brang, P., Braun, S., Seitler, E., & Rihm, B. (2004). Ammonia monitoring in Switzerland with passive samplers: Patterns, determinations and comparison with modelled concentrations. Environmental Monitoring and Assessment, 98, 93–107.CrossRefGoogle Scholar
  47. Tyndall, J., & Colletti, J. (2007). Mitigating swine odor with strategically designed shelterbelt systems: A review. Agroforestry Systems, 69, 45–65.CrossRefGoogle Scholar
  48. UNECE (1999). Draft protocol to the 1979 Convention on Long Range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground Level Ozone (EB.AIR/1999.1).Google Scholar
  49. van der Eerden, L. J. M. (1982). Toxicity of ammonia to plants. Agriculture and Environment, 7, 223–235.CrossRefGoogle Scholar
  50. von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., et al. (2010). Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 3, 91–112.CrossRefGoogle Scholar
  51. von Bobrutzki, K., Müller, H.-J., & Scherer, D. (2011). Factors affecting the ammonia content in the air surrounding a broiler farm. Biosystems Engineering, 108, 322–333.CrossRefGoogle Scholar
  52. Waldzustandsbericht (2008). Waldzustandsbericht der Länder Brandenburg und Berlin.
  53. Warneck, P. (1988). Chemistry of the natural atmosphere. New York: Academic.Google Scholar
  54. Zimmerling, R. (2000). Die qualität der konzentrationsmessung mit passiv-samlern ergebnisse methodischer untersuchungen. Landbauforschung Völkenrode, 213, 129–133.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kristina von Bobrutzki
    • 1
  • Christian Ammon
    • 1
  • Werner Berg
    • 1
  • Peter Einert
    • 2
  • Merike Fiedler
    • 1
  • Hans-Joachim Müller
    • 1
  • Dieter Scherer
    • 3
  • Björn Strohbach
    • 2
  1. 1.Department of Engineering for Livestock ManagementLeibniz Institute for Agricultural Engineering Potsdam-BornimPotsdamGermany
  2. 2.Eberswalde Forestry Competence CentreResearch Institute of the Public Enterprise Forst BrandenburgEberswaldeGermany
  3. 3.Chair of Climatology, Department of EcologyTechnische Universität BerlinBerlinGermany

Personalised recommendations