Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 5, pp 3359–3371 | Cite as

Long-term variability of metals from fungicides applied in amended young vineyard fields of La Rioja (Spain)

  • Eliseo Herrero-Hernández
  • M. Soledad Andrades
  • M. Sonia Rodríguez-Cruz
  • Michele Arienzo
  • María J. Sánchez-MartínEmail author
Article

Abstract

The long-term variability of total Cu content from fungicides applied in a certified wine region of Spain (La Rioja) and of other metals (Cd, Cr, Ni, Pb, and Zn) was evaluated in three young vineyard soils and subsoils unamended and amended with spent mushroom substrates (SMS) over a 3-year period (2006–2008). SMS is a promising agricultural residue as an amendment to increase the soil organic matter content but may modify the behaviour of metals from pesticide utilisation in vineyards. Fresh and composted SMS was applied each year at a rate of 25 t ha−1 (dry-weight). Copper concentrations in the three unamended soils were 21.2–88.5, 25.5–77.1, and 29.4–78.4 mg kg−1. They exceeded natural Cu concentrations of the region and reference sub-lethal hazardous concentration for soil organism. The concentrations of Cd, Ni, Pb, and Zn were largely below the sub-lethal limits. Thus, although Cu levels were lower than those of established vineyards, vine performance, and productivity might be affected. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. The amendment practice seemed to have caused temporarily Cu mobilization respect to untreated soils. Total zinc concentrations fall within the range of the natural soil of La Rioja and were significantly affected (p < 0.05) especially by fresh state SMS addition, with increasing up to 75% respect to untreated specimen. The results indicated a build-up of fresh sites for metal retention at both surface and subsurface level, although no accumulation of metals was observed in the short-term period. However, the benefit for soils and the negative effects need to be monitored in the long run.

Keywords

Fungicide Soil Subsoil Vineyard Spent mushroom substrate Heavy metal 

Notes

Acknowledgements

This work was funded by the Spanish Ministry of Science and Innovation (projects CIT-310200-2007-63 and AGL2007-61674/AGR). E. Herrero-Hernández thanks CSIC for his JAE-doc contract and Prof. Arienzo thanks the University of Naples, Federico II, for sponsoring his stay in the IRNASA under the international short term exchange visiting programme. The authors thank L.F. Lorenzo, J.M. Ordax, and A. González for the technical assistance and CIDA (Dr. E. García-Escudero and J.M. Martínez Vidaurre), INTRAVAL S.L., and the wineries CVNE, Aldeanueva de Ebro, and Viña Ijalba from La Rioja, Spain, for their collaboration.

References

  1. Adriano, D. C. (2001). Trace elements in the terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. New York: Springer.Google Scholar
  2. Arias-Estévez, M., Nóvoa-Muñoz, J. C., Pateiro, M., & López-Periago, E. J. (2007). Influence of aging on copper fractionation in an acid soil. Soil Science, 172, 225–232.CrossRefGoogle Scholar
  3. Barber, S. A. (1995). Soil nutrient bioavailability (2nd ed.). New York: John Wiley & Sons, Inc.Google Scholar
  4. Belotti, E. (1998). Assessment of a soil quality criterion by means of a field survey. Applied Soil Ecology, 10, 51–63.CrossRefGoogle Scholar
  5. Bolan, N. S., Adriano, D. C., Duraisamy, P., & Mani, A. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost application. Plant and Soil, 256, 231–241.CrossRefGoogle Scholar
  6. Delusia, A., Giandon, P., Aichner, M., Bortolami, P., Bruna, L., Lupetti, A., et al. (1996). Copper pollution in Italian vineyard soils. Communications in Soil Science and Plant Analysis, 27, 1537–1548.CrossRefGoogle Scholar
  7. Díaz-Barrientos, E., Madrid, L., Maqueda, C., Morillo, E., Ruiz-Cort, E., Basallote, E., et al. (2003). Copper and zinc retention by an organically amended soil. Chemosphere, 50, 911–917.CrossRefGoogle Scholar
  8. Fernández-Calviño, D., Rodríguez-Suárez, J. A., López-Periago, E., Arias-Estévez, M., & Simal-Gándara, J. (2008). Copper content of soils and river sediments in a winegrowing area, and its distribution among soil or sediment components. Geoderma, 145, 91–97.CrossRefGoogle Scholar
  9. Flores-Velez, L. M., Ducarior, J., Jaunet, A. M., & Robert, M. (1996). Study of the distribution of copper in an acid sandy vineyard soil by three different methods. European Journal of Soil Science, 47, 523–532.CrossRefGoogle Scholar
  10. Frampton, G. K., Jansch, S., Scott-Fordsmand, J. J., Rombke, J., & Van Den Brink, P. J. (2006). Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environmental Toxicology and Chemistry, 25, 2480–2489.CrossRefGoogle Scholar
  11. Frank, R., Braun, H. E., Ishida, K., & Suda, P. (1976). Persistent organic and inorganic pesticide residues in orchard soils and vineyards of Southern Ontario. Canadian Journal of Soil Science, 56, 463–484.CrossRefGoogle Scholar
  12. Gee, G. W., Or, D. (2002). Particle-size analysis. In: J. H. Dane, G. C. Topp (Eds.), Methods of Soil Analysis. Part 4. Physical Methods (pp. 255–293). Madison, WI: Soil Science Society of America.Google Scholar
  13. Gobierno de la Rioja , Spain. Plan Director de Residuos de La Rioja 2007-2015. http://www.larioja.org. Accessed on April 2010.
  14. Guo, M., Chorover, J., & Fox, R. H. (2001). Effects of spent mushroom substrate weathering on the chemistry of underlying soils. Journal of Environmental Quality, 30, 2127–2134.CrossRefGoogle Scholar
  15. Helling, B., Reinecke, S. A., & Reinecke, A. J. (2000). Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicology and Environmental Safety, 46, 108–116.CrossRefGoogle Scholar
  16. Hsu, J. H., & Lo, S. L. (2000). Characterization and extractability of copper, manganese, and zinc in swine manure composts. Journal of Environmental Quality, 29, 447–453.CrossRefGoogle Scholar
  17. Iñigo, V., Andrades, M., Marín, A., & Alonso, J. I. (2006). Determinación de los niveles de referencia de cinc, cobre y niquel en los suelos naturales de la Rioja. In J. F. Gallardo (Ed.), Medio Ambiente en Iberoamerica (pp. 249–255). Badajoz: Diputación de Badajoz.Google Scholar
  18. Jansch, S., Rombke, J., Schallanass, H.-J., & Terytze, K. (2007). Derivation of soil values for the path ‘soil-soil organisms’ for metals and selected organic compounds using species sensitivity distributions. Environmental Science and Pollution Research, 14, 308–318.CrossRefGoogle Scholar
  19. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Florida: CRC Press.Google Scholar
  20. Kiekens, L. (1990). Zinc. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 261–279). Glasgow: Blackie.Google Scholar
  21. Komárek, M., Čadková, E., Chrastný, V., Bordas, F., & Bollinger, J. C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International, 36, 138–151.CrossRefGoogle Scholar
  22. Komárek, M., Száková, J., Rohošková, M., Javorská, H., Chrastný, V., & Balík, J. (2008). Copper contamination of vineyard soils from small wine producers: a case study from the Czech Republic. Geoderma, 147, 16–22.CrossRefGoogle Scholar
  23. MAPA (Ministerio de Agricultura Pesca y Alimentacion). (1990). Real Decreto 1310/1990 de 29 de octubre, sobre utilización de los lodos de depuración en el sector agrario. Boletín Oficial del Estado, 262, 32339–32340.Google Scholar
  24. MAPA (Ministerio de Agricultura, Pesca y Alimentación). (1986). Métodos oficiales de análisis. Madrid: Dirección General de Política Alimentaría.Google Scholar
  25. Marín, A., Alonso-Martirena, J. I., & Andrades, M. (2000). Contenido en metales pesados en suelos de viñedo de la D.O.C. La Rioja. Edafología, 7, 351–357.Google Scholar
  26. Marín-Benito, J. M., Sánchez-Martín, M. J., Andrades, M. S., Pérez-Clavijo, M., & Rodríguez-Cruz, M. S. (2009). Effect of spent mushroom substrate amendment of vineyard soils on the behaviour of fungicides: 1. Adsorption–desorption of penconazole and metalaxyl by soils and sub-soils. Journal of Agricultural and Food Chemistry, 57, 9634–9642.CrossRefGoogle Scholar
  27. Martínez-Villegas, N., & Martínez, C. E. (2008). Solid- and solution-phase organics dictate copper distribution and speciation in multicomponent systems containing ferrihydrite, organic matter, and montmorillonite. Environmental Science and Technology, 42, 2833–2838.CrossRefGoogle Scholar
  28. McBride, M. B., Richards, B. K., Steenhuis, T., & Spiers, G. (1999). Long-term leaching of trace elements in a heavily sludge-amended silty clay loam soil. Soil Science, 164, 613–623.CrossRefGoogle Scholar
  29. Miguéns, T., Leirós, C., Gil-Sotres, F., & Trasar-Cepeda, C. (2007). Biochemical properties of vineyard soils in Galicia, Spain. Science of the Total Environment, 378, 218–222.CrossRefGoogle Scholar
  30. Mihaljevič, M., Ettler, V., Šebek, O., Strnad, L., & Chrastný, V. (2006). Lead isotopic signatures of wine and vineyard soils, tracers of lead origin. Journal of Geochemical Exploration, 88, 130–133.CrossRefGoogle Scholar
  31. Nóvoa-Muñoz, J. C., Queijeiro, J. M. G., Blanco-Ward, D., Álvarez-Olleros, C., Martínez-Cortizas, A., & García-Rodeja, E. (2007). Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Science of the Total Environment, 378, 23–27.CrossRefGoogle Scholar
  32. Paoletti, M. G., Sommaggioa, D., Favrettoa, M. R., Petruzzelli, B., Pezzarossab, B., & Barbafieri, M. (1998). Earthworms as useful bioindicators of agroecosytem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology, 10, 137–150.CrossRefGoogle Scholar
  33. Pavel, J., Vávrová, J., Herzogová, L., & Pilařová, V. (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 159, 335–341.CrossRefGoogle Scholar
  34. Pérez-de-Mora, A., Ortega-Calvo, J. J., Cabrera, F., & Madejón, E. (2005). Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Applied Soil Ecology, 28, 125–137.CrossRefGoogle Scholar
  35. Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122, 151–166.CrossRefGoogle Scholar
  36. Ramos, M. C. (2006). Metals in vineyard soils of the Penedès area (NE Spain) after compost application. Journal of Environmental Management, 78, 209–215.CrossRefGoogle Scholar
  37. Sanders, J. R. (1980). The use of adsorption equations to describe copper complexing by humified organic matter. Journal of Soil Science, 31, 633–641.CrossRefGoogle Scholar
  38. Sauve, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34, 1125–1131.CrossRefGoogle Scholar
  39. Sayen, S., Mallet, J., & Guillon, E. (2009). Aging effect on the copper sorption on a vineyard soil: column studies and SEM-EDS analysis. Journal of Colloid and Interface Science, 331, 47–54.CrossRefGoogle Scholar
  40. Strawn, D. G., & Baker, L. L. (2009). Molecular characterization of copper in soils using X-ray absorption spectroscopy. Environmental Pollution, 157, 2813–2821.CrossRefGoogle Scholar
  41. Temminghoff, E. J. M., Van Der Zee, S. A. E. T. M., & De Haan, F. A. M. (1997). Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environmental Science and Technology, 31, 1109–1115.CrossRefGoogle Scholar
  42. USDA-United States Department of Agriculture. Soil Survey Staff. (2006). Keys to soil taxonomy. Washington: Natural Resources Conservation Service.Google Scholar
  43. van Herwijnen, R., Laverye, T., Poole, J., Hodson, M. E., & Hutchings, T. R. (2007). The effect of organic materials on the mobility and toxicity of metals in contaminated soils. Applied Geochemistry, 22, 2422–2434.CrossRefGoogle Scholar
  44. Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224.CrossRefGoogle Scholar
  45. Weigand, H., & Totsche, K. U. (1998). Flow and reactivity effects on dissolved organic matter transport in soil columns. Soil Science Society of America Journal, 62, 1268–1274.CrossRefGoogle Scholar
  46. Wightwick, A., Mollah, M. R., Partington, D. L., & Allison, G. (2008). Copper fungicide residues in Australian vineyard soils. Journal of Agricultural and Food Chemistry, 56, 2457–2464.CrossRefGoogle Scholar
  47. Wuest, P. J., Levanon, D., & Hadar, Y. (1995). Environmental, agricultural and industrial uses for spent mushroom substrate from mushroom farms. Emmaus: J G Press, Inc.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Eliseo Herrero-Hernández
    • 1
  • M. Soledad Andrades
    • 2
  • M. Sonia Rodríguez-Cruz
    • 1
  • Michele Arienzo
    • 3
  • María J. Sánchez-Martín
    • 1
    Email author
  1. 1.Instituto de Recursos Naturales y Agrobiologia de Salamanca (IRNASA-CSIC)SalamancaSpain
  2. 2.Departamento de Agricultura y AlimentaciónUniversidad de la RiojaLogroñoSpain
  3. 3.Dipartimento di Scienze del Suolo, Pianta, Ambiente e delle Produzioni AnimaliUniversità Federico IINaplesItaly

Personalised recommendations