Environmental Monitoring and Assessment

, Volume 184, Issue 5, pp 3315–3340

Heavy metals: their pathway from the ground, groundwater and springs to Lake Góreckie (Poland)

Article

Abstract

The migration pathways of heavy metals derived from an area previously in agricultural use was investigated in the Wielkopolski National Park (mid-western Poland). The heavy metals involved (Cd, Cu, Cr, Pb, Ni and Zn) were determined in groundwater, the springs that feed Lake Góreckie and the lake itself. In order to show how the heavy metals may be set free and what is their biological availability, soil and sediment samples were subjected to single-stage extraction, using 0.01 M CaCl2, 0.02 M EDTA, 0.005 M DTPA, 0.1 M HCl, 1 M HCl and de-ionised water. Varying metal concentrations were recorded in the water samples during the study period (from November 2009 to July 2010), usually with higher values in winter and lower ones in summer. The seasonal changes may be ascribed to natural processes taking place in the ground- and surface waters of Lake Góreckie. On the other hand, the concentration levels (mostly of Cd, Pb and Cr) are indicative of anthropogenic activity. It should be mentioned in this context that the highest metal concentrations were found in the soil layer. The concentrations were also found to exceed both the Polish and the World Health Organization water-quality standards. It appears that the soils are highly contaminated, mostly with cadmium. The long-lasting effect of acid precipitation in the area makes it possible for immobile forms to become mobile, thus facilitating further migration into the environment.

Keywords

Heavy metals Springs Groundwater Lake Góreckie Wielkopolski National Park Single-stage extraction 

References

  1. Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C., & Barberis, R. (2002). Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles. Environmental Pollution, 119, 177–193.CrossRefGoogle Scholar
  2. Alloway, B. J. (1995). Heavy metal in soils. London: Blackie Academic and Professional.Google Scholar
  3. Alloway, A. B. J., Morgan, H., Assink, J. W., & Van den Brink, W. J. (1986). The behaviour of availability of Cd, Ni, and Pb in polluted soils. In Contaminated Soils (pp. 101–113). the Netherlands: Dordrecht.CrossRefGoogle Scholar
  4. Bojakowska, I., & Sokołowska, G. (1998). Geochemical purity classes of bottom sediments. Przegląd Geologiczny, 46, 49–55.Google Scholar
  5. Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: a review. Journal of Environmental Quality, 26, 590–602.CrossRefGoogle Scholar
  6. Ettler, V., Matura, M., Mihaljevič, M., & Bezdička, P. (2006). Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate. Environmental Geology, 49, 610–619.CrossRefGoogle Scholar
  7. Evans, L. J., & Zhao, G. (1995). Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. International Journal of Environmental Analytical Chemistry, 59, 291–302.CrossRefGoogle Scholar
  8. Frei, M., Bielert, M., & Heinrichs, H. (2000). Effects of pH, alkalinity and bedrock chemistry on metal concentrations of spring in an acidified catchment (Ecker Dam, Harz Mountains, FRG). Chemical Geology, 170, 221–242.CrossRefGoogle Scholar
  9. Górski, J. (2001). Proposal of anthropogenic contamination evaluation of ground water on the base of chosen hydrochemical indicators. Współczesne Problemy Hydrogeologii, 2, 309–313.Google Scholar
  10. Górski, J., & Przybyłek, J. (2003). The problems of anthropogenic threat and protection of ground water at the Wielkopolski National Park area and surroundings. Morena, 10, 59–71.Google Scholar
  11. Helios-Rybicka, E., Adamiec, E., & Aleksander-Kwaterczak, U. (2005). Distribution of trace metals in the Odra River system: water–suspended matter–sediments. Limnological Review, 35, 185–198.CrossRefGoogle Scholar
  12. Hydrogeological Map of Poland (2006) 1:50 000, Stęszew Sheet. WarsawGoogle Scholar
  13. Ibragimow, A., Głosińska, G., Siepak, M., & Walna, B. (2010). Heavy metals in fluvial sediments of the Odra River flood plains—introductory research. Quaestiones Geographiceae, 29(1), 37–47.CrossRefGoogle Scholar
  14. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E., & McDowell, W. H. (1981). “Acid rain”, dissolved aluminium and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochimica et Cosmochimica Acta, 45, 1421–1437.CrossRefGoogle Scholar
  15. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soil and plants (2nd ed.). Boca Raton: CRC Press.Google Scholar
  16. Karczewska, A. (1996). Metal species distribution in the area affected by copper smelter. Applied Geochemistry, 11, 35–42.CrossRefGoogle Scholar
  17. Laing, G. D., Rinklebe, J., Vendecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. The Science of the Total Environment, 40, 3972–3985.Google Scholar
  18. Lis, J., & Pasieczna, A. (1995). Geochemical Atlas of Poland. Warsaw: Polish Geological Institute.Google Scholar
  19. Lopes-Sanchez, J. F., Sahuquilo, A., Rauret, G., Lachica, M., Gomez, A., Ure, A. M., et al. (2002). Extraction procedures for soil analysis. In Ph Quevauviller (Ed.), Methodologies for soil and sediment fractionation studies (pp. 28–57). Brussels: The Royal Society of Chemistry.CrossRefGoogle Scholar
  20. Mc, B. M. (1994). Environmental chemistry of soils. New York: Oxford University Press.Google Scholar
  21. Mc Laughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 11–14.CrossRefGoogle Scholar
  22. Minister of Health (2010) Regulation on the quality of water for consumption by humans, 20 April (Dziennik Ustaw no. 72, poz. 466) (in Polish).Google Scholar
  23. Minister of the Environment (2008a) Regulation on the criteria and methods used in the assessment of groundwater condition, 23 July (Dziennik Ustaw of 6 August 2008) (in Polish).Google Scholar
  24. Minister of the Environment (2008b) Regulation on the methods for classifying the condition of consolidated surface water bodies, 28 August (Dziennik Ustaw of 9 September 2008) (in Polish).Google Scholar
  25. Müller G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chemiker Zeitung, Chemie, Technische Chemie, Chemiewirtscaft 105: 157–164.Google Scholar
  26. Peijnenburg, W., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.CrossRefGoogle Scholar
  27. Pełechaty, M., Gąbka, M., Sugier, P., Pukacz, A., Chmiel, S., Ciecierska, H., et al. (2009). Lychnothamnus barbatus in Poland: habitats and associations. Charophytes, 2, 13–18.Google Scholar
  28. Quevauviller, Ph. (2002). SM&T activities in support of standardization of operationally defined extraction procedures for soil and sediment analysis. In Ph Quevauviller (Ed.), Methodologies for soil and sediment fractionation studies. Brussels: The Royal Society of Chemistry.CrossRefGoogle Scholar
  29. Reimann, C., & De Caritat, P. (1998). Chemical elements in the environment: factsheet for the geochemist and environmental scientist. Berlin: Springer.Google Scholar
  30. Rennert, T., Meisner, S., Rinklebe, J., & Totsche, K. U. (2010). Dissolved inorganic contaminants in floodplain soil: comparison of in situ soil solutions and laboratory methods. Water, Air, and Soil Pollution, 209, 489–500.CrossRefGoogle Scholar
  31. Ross, S. M. (1994). Toxic metals in soil-plant system. London: Wiley.Google Scholar
  32. Schmidtt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of natural organic matter on the adsorption of metal ions onto clay minerals. Environmental Science and Technology, 36, 2932–2938.CrossRefGoogle Scholar
  33. Siepak, J., Burchardt, L., Pełechaty, M., & Osowski, A. (1999). Study outline 1948 – 1998 (Hydrochemical studies in the area of the Wielkopolski National Park). Poznań: University Press.Google Scholar
  34. Siepak, M., Novotný, K., Vaculovič, T., Górski, J., & Przybyłek, J. (2010). Variability of chemical composition of groundwater at the Miocene Aquifer in the Poznań-Gostyń fault graben region (Poland). Polish Geological Institute Bulletin, 441, 145–156.Google Scholar
  35. Sobczyński, T., & Joniak, T. (2009). Differences of the composition and contribution of phosphorus fractions in the bottom sediments of Góreckie Lake (Wielkopolska National Park). Environment Protection Engineering, 35, 89–95.Google Scholar
  36. Sobczyński, T., Elbanowska, H., Zerbe, J., Siepak, J., Andrzejewski, W., & Mastyński, J. (1995). Bioaccumulation of heavy metals in fish of the lakes of the Wielkopolski National Park. Morena, 3, 111–116.Google Scholar
  37. Sobczyński, T., Zerbe, J., Elbanowska, H., & Siepak, J. (1996). Chemical study of Lake Góreckie bottom sediments in view of the assessment of anthropopressure. Ekologia i Technika, 2, 14–18.Google Scholar
  38. Sposito, G. (1986). Sorption of trace metals by humic materials in soils and natural water. Critical Reviews in Environmental Control, 16, 193–229.CrossRefGoogle Scholar
  39. Stauffer, R. E., & Wittchen, B. D. (1991). Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA. Geochimica et Cosmochimica Acta, 55, 3253–3271.CrossRefGoogle Scholar
  40. Szczucińska, A., Siepak, M., Zioła-Frankowska, A., & Marciniak, M. (2010). Seasonal and spatial changes of metal concentrations in groundwater outflows from porous sediments in the Gryżyna-Grabin Tunnel Valley in western Poland. Environmental Earth Sciences, 61, 921–930.CrossRefGoogle Scholar
  41. Szyper, H., & Gołdyn, R. (2002). Role of catchment area in the transport of nutrients to lakes in the Wielkopolska National Park in Poland. Lakes & Reservoirs: Research and Management, 7, 25–33.CrossRefGoogle Scholar
  42. Tack, F. M. G., & Verloo, M. G. (1999). Single extraction versus sequential extraction for estimation of heavy metal fractions in reduced and oxidized dredged sediments. Chemical Speciation and Bioavailability, 11, 43–50.CrossRefGoogle Scholar
  43. Topographic Map (1998) 1:10 000, Trzebaw Sheet (N-33-142-B-a-3). Head Office of Geodesy and Cartography, Warsaw.Google Scholar
  44. Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. The Science of the Total Environment, 178, 3–10.CrossRefGoogle Scholar
  45. Walna, B. (2006). Composition and soil water changes as a measure of atmospheric precipitation impact in forest ecosystem. Central European Journal of Chemistry, 5, 349–383.CrossRefGoogle Scholar
  46. Walna, B., & Kurzyca, I. (2007). Evaluation of bulk deposition in protected woodland area in western Poland. Environmental Monitoring and Assessment, 131, 13–26.CrossRefGoogle Scholar
  47. Walna, B., & Kurzyca, I. (2010). Changes and trends in the chemistry of precipitation in the Wielkopolski National Park (Poland). In G. Polisciano & O. Farina (Eds.), National Parks: Vegetation, Wildlife and Threats (pp. 51–82). Commack: Nova.Google Scholar
  48. Walna, B., & Siepak, J. (1999). Research on the variability of physical-chemical parameters characterizing acidic atmospheric precipitation at the Jeziory Ecological Station in the Wielkopolski National Park (Poland). The Science of the Total Environment, 239, 173–187.CrossRefGoogle Scholar
  49. Walna, B., Siepak, J., & Drzymała, S. (2001). Soil degradation in the Wielkopolski National Park (Poland) as an effect of acid rain simulation. Water, Air, and Soil Pollution, 130, 1727–1732.CrossRefGoogle Scholar
  50. Walna, B., Kurzyca, I., & Siepak, J. (2004). Local effects of pollution on chemical composition of precipitation in areas differing in human impact. Polish Journal of Environmental Studies, 13, 36–42.Google Scholar
  51. Walna, B., Spychalski, W., & Siepak, J. (2005). Assessment of potentially reactive pools of aluminium in poor forest soils using two methods of fractionation analysis. Journal of Inorganic Biochemistry, 99(9), 1807–1816.CrossRefGoogle Scholar
  52. Walna, B., Kurzyca, I., & Siepak, J. (2007). Variations in the fluoride level in precipitation in a human impact region. Water, Air, and Soil Pollution, 7, 33–40.CrossRefGoogle Scholar
  53. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva, Switzerland.Google Scholar
  54. World Reference Base for Soil Resources (1998). Food and Agriculture Organization of United Nations. World Soil Resources Reports no. 103. FAO, Rome.Google Scholar
  55. Zerbe, J., Elbanowska, H., Gramowska, H., Adamczewska, M., Sobczyński, T., Kabaciński, M., & Siepak, J. (1994). The assessment of the influence of emission of fluorine and other pollutants on water, plants and soil in the Wielkopolski National Park. In L. Kozacki (Ed.), Geoecosystem of the Wielkopolski National Park as a protective area under human impact (pp. 89–135). Poznań: Bogucki Wydawnictwo Naukowe.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Jeziory Ecological StationAdam Mickiewicz UniversityMosinaPoland
  2. 2.Institute of Geology, Department of Hydrogeology and Water ProtectionAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations