Environmental Monitoring and Assessment

, Volume 184, Issue 4, pp 2453–2464 | Cite as

Adapting forest health assessments to changing perspectives on threats—a case example from Sweden

  • Sören Wulff
  • Åke Lindelöw
  • Lars Lundin
  • Per Hansson
  • Anna-Lena Axelsson
  • Pia Barklund
  • Sture Wijk
  • Göran Ståhl
Article

Abstract

A revised Swedish forest health assessment system is presented. The assessment system is composed of several interacting components which target information needs for strategic and operational decision making and accommodate a continuously expanding knowledge base. The main motivation for separating information for strategic and operational decision making is that major damage outbreaks are often scattered throughout the landscape. Generally, large-scale inventories (such as national forest inventories) cannot provide adequate information for mitigation measures. In addition to broad monitoring programs that provide time-series information on known damaging agents and their effects, there is also a need for local and regional inventories adapted to specific damage events. While information for decision making is the major focus of the health assessment system, the system also contributes to expanding the knowledge base of forest conditions. For example, the integrated monitoring programs provide a better understanding of ecological processes linked to forest health. The new health assessment system should be able to respond to the need for quick and reliable information and thus will be an important part of the future monitoring of Swedish forests.

Keywords

Forest health Monitoring Forest damage Resin-top disease Spruce bark beetle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C. D. (2009). Climate induced forest dieback: An escalating global phenomenon. Unasylva, 60(1–2), 43–49.Google Scholar
  2. ARNEWS. Canada’s national forest health monitoring network: manual on plot establishment and monitoring (revised) (1994). Information Report PI-X-117. Petawaaw National Forest Institute Chalk River, OntarioGoogle Scholar
  3. Axelsson, A-L, Ståhl, G., Söderberg, U., Petersson, H., Fridman, J., & Lundström, A. (2010). National forest inventories reports: Sweden (pp. 613–621). In E. Tomppo, T.h. Gschwantner, M. Lawrence, & R. E. McRoberts (Eds.), National forest inventories: pathways for common reporting (p. 651). New York: Springer.Google Scholar
  4. Bakys, R., Vasaitis, R., Barklund, P., Ihrmark, K., & Stenlid, J. (2009). Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathology, 58, 284–292.CrossRefGoogle Scholar
  5. Barth, A. (2007). Spatially comprehensive data for forestry scenario analysis: Consequences of errors and methods to enhance usability. Doctoral dissertation.Google Scholar
  6. Binkley, D., & Högberg, P. (1997). Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119–152.CrossRefGoogle Scholar
  7. Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63, 625–644.CrossRefGoogle Scholar
  8. Canadian Forest Service (2011). http://cfs.nrcan.gc.ca.
  9. Ciesla, V. M., & Dounabauer, E. (1994). Decline and dieback of trees and forests: A global overview. FAO Forestry Paper, 120, 90.Google Scholar
  10. Davidsson, A. G., Reeks, W. A., & Prentice, R. M. (1968). Forest insects and disease surveys as an aid to the management of Canadian forests (p. 11). Papers. 9th Commonw. For. Conf., New Delhi.Google Scholar
  11. Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2000). Forest Management (4th ed., p. 790). New York: McGraw-Hill Science/Engineering/Math.Google Scholar
  12. EU Life+ program Further Development and Implementation of an EU-level Forest Monitoring System (FutMon) (2010). http://futmon.org/.
  13. Ferretti, M. (2009). Quality assurance in ecological monitoring—Towards a unifying perspective. Journal of Environmental Monitoring, 11, 726–729.CrossRefGoogle Scholar
  14. Ferretti, M., König, N., Rautio, P., & Sase, H. (2009). Quality assurance (QA) in international forest monitoring programmes: Activity, problems and perspectives from East Asia and Europe. Annals of Forest Science, 66, 403.CrossRefGoogle Scholar
  15. Finnish Forest Research Institute (Metla - MetINFO) (2010). http://www.metla.fi/metinfo/metsienterveys/index.htm.
  16. Gregoire, T. G., & Valentine, H. T. (2008). Sampling strategies for natural resources and the environment. Boca Raton: Chapman & Hall/CRC.Google Scholar
  17. Hanewinkel, M., Breidenbach, J., Neeff, T., & Kublin, E. (2008). Seventy-seven years of natural disturbances in a mountain forest area—The influence of storm, snow, and insect damage analysed with long-term time series. Canadian Journal of Forest Research, 38, 2249–2261.CrossRefGoogle Scholar
  18. Innes, J. L. (1993). Forest health: Its assessments and status. Wallingford: CAB International.Google Scholar
  19. Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change—The importance of long-term data sets. The New Phytologist, 177, 8–11.Google Scholar
  20. Jönsson, A. M., Appelberg, G., Harding, S., & Bärring, L. (2009). Spatio-temporal impact of climate change on the activity and voltinism of spruce bark beetle, Ips typographus. Global Change Biology, 15, 486–499.CrossRefGoogle Scholar
  21. Kaitera, J., & Nuorteva, H. (2008). Inoculations of eight Pinus species with Cronartium and Peridermium stem rusts. Forest Ecology and Management, 255(3–4), 973–981.CrossRefGoogle Scholar
  22. Kaitera, J., Nourteva, H., & Hantula, J. (2005). Distribution and frequency of Cronartium flaccidum on Melampyrum spp. In Finland. Canadian Journal of Forest Research, 35, 229–234.CrossRefGoogle Scholar
  23. Karlman, M., Hansson, P., & Witzell, J. (1994). Sclerroderris canker on lodgepole pine introduced in northern Sweden. Canadian Journal of Forest Research, 24, 1948–1959.CrossRefGoogle Scholar
  24. Lindelow, A., & Schroeder, M. (2001). Spruce bark beetle, Ips typographus (L.). In Sweden: Monitoring and risk assessments. Journal of Forest Science (Prague), 47(2), 40–42.Google Scholar
  25. Lindelow, A., & Schroeder, M. (2008). The storm “Gudrun” and the spruce bark beetle in Sweden. In G. Steyrer, C. Tomiczek, & C. Lackner (Eds.), Second meeting of forest protection and forest phytosanitary specialists. Vienna, Austria, 27–28 November 2007. Forstschutz aktuell nr 44, Bundesforschungs- und Ausbildungszentrum fur wald, Naturgefahren und Landschaft (BFW), Wien, Austria.Google Scholar
  26. Lorenz, M. (1995). International co-operative programme on assessment and monitoring of air pollution effects on forests—ICP Forests. Water, Air, and Soil Pollution, 85, 1221–1226.CrossRefGoogle Scholar
  27. Lorenz, M. (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (12 pp.). Part I, Objectives, Strategy and Implementation of ICP Forests, UNECE, ICP Forests, Hamburg. http://www.icp-forests.org/Manual.htm.
  28. Loucks, O. L. (1992). Forest response research in NAPAP: Potentially successful linkage of policy and science. Ecological Applications, 2(2), 117–123.CrossRefGoogle Scholar
  29. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., et al. (2007). Who needs environmental monitoring? Front Ecology Environment, 5(5), 253–260.CrossRefGoogle Scholar
  30. Lundin, L., Aastrup, M., Bringmark, L., Bråkenhielm, S., Hultberg, H., Johansson, K., et al. (2001). Impacts from deposition on Swedish forest ecosystems identified by integrated monitoring. Water, Air, and Soil Pollution, 130, 1031–1036.CrossRefGoogle Scholar
  31. Lundin, L., Aastrup, M., Bringmark, L., Grandin, U., Hultberg, H., Pihl-Karlsson, G., et al. (2008). Report on national ICP IM activities in Sweden. In S. Kleemola & M. Forsius (Eds.), 17th annual report 2008. Convention on long-range transboundary air pollution, international cooperative programme on integrated monitoring of air pollution effects on ecosystems. The finnish environment 28/2008 (pp. 109–115). Helsinki: Finnish Environment Institute.Google Scholar
  32. Manion, P. D. (1991). Tree disease concepts. Englewood Cliffs: Prentice-Hall.Google Scholar
  33. McRoberts, R. E., Tomppo, E., Schadauer, K., Vidal, C., Ståhl, G., Chirici, G., et al. (2009). Harmonizing national forest inventories. Journal of Forestry June, 2009, 179–187.Google Scholar
  34. Meynard, C. N., & Quinn, F. (2007). Predicting species distributions: A critical comparison of the most common statistical models using artificial species. Journal of Biogeography, 34, 1455–1469.CrossRefGoogle Scholar
  35. Moffat, A. J., Davis, S., & Finér, L. (2008). Reporting the results of forest monitoring—An evaluation of the European forest monitoring programme. Forestry, 81, 75–90.CrossRefGoogle Scholar
  36. Mota, M. M., Braasch, H., Bravo, M. A., Penas, A. C., Burgermeister, W., Metge, K., et al. (1999). First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology, 1(7–8), 727–734.CrossRefGoogle Scholar
  37. Nevalainen, S., Lindgren, M., Pouttu, P., Heinonen, J., Hongisto, M., & Neuvonen, S. (2010). Extensive tree health monitoring networks are useful in revealing the impacts of widespread biotic damage in boreal forests. Environmental Monitoring and Assessment, 168, 159–171.CrossRefGoogle Scholar
  38. Nihlgard, B. (1985). The ammonium hypothesie—An additional explanation to the forest dieback in Europe. Ambio, 14(1), 2–8.Google Scholar
  39. Norwegian Forest and Landscape Institute, Forest health (2010). http://www.skogoglandskap.no/temaer/skogskader.
  40. Økland, B., & Bjørnstad, O. (2003). Synchrony and geographical variation of the spruce bark beetle (Ips typographus) during a non-epidemic period. Population Ecology, 45, 213–219.CrossRefGoogle Scholar
  41. Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., et al. (2002). Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 420, 403–407.CrossRefGoogle Scholar
  42. Percy, K. E., & Ferretti, M. (2003). Air pollution and forest health: Toward new monitoring concepts. Environmental Pollution, 130, 113–126.CrossRefGoogle Scholar
  43. Ranneby, B., Cruse, T., Hägglund, B., Jonasson, H., & Swärd, J. (1987). Designing a new national forest survey for Sweden. Studia Forestalia Suecica, 177, 29.Google Scholar
  44. Rebetz, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P., et al. (2006). Heat and drought 2003 in Europe: A climate synthesis. Annals of Forest Science, 63, 569–577.CrossRefGoogle Scholar
  45. Ringvall, A., Petersson, H., Ståhl, G., & Lämås, T. (2005). Surveyor consistancy in presence/absence sampling for monitoring vegetation in a boreal forest. Forest Ecology and Management, 212, 109–117.CrossRefGoogle Scholar
  46. Schütt, P., & Cowling, E. B. (1985). Waldsterben, a general decline of forests in Central Europe: Symptom development, and possible causes. Plant Disease, 69, 548–558.Google Scholar
  47. Seely, B., Nelson, J., Wells, R., Peter, B., Meitner, M., Anderson, A., et al. (2004). The application of a hierarchical, decision-support system to evaluate multi-objective forest management strategies: A case study in northeastern British Columbia, Canada. Forest Ecology and Management, 199, 283–305.CrossRefGoogle Scholar
  48. Shaw, J. D. (2008). Benefits of a strategic national forest inventory to science and society: The USDA Forest Service Forest Inventory and Analysis program. iForest, 1, 81–85.CrossRefGoogle Scholar
  49. Sliggers, J., & Kakebeeke, W. (2004). Clearing the air: 25 years of the convention on long-range transboundary air pollution (p. 167). ECE/EB.AIR/84, UN/ECE, Geneva, Switzerland.Google Scholar
  50. SLU, Department of forest mycology and pathology, Diagnostics of forest damage (2010). http://www.skogsskada.slu.se.
  51. Thomas, F. M., Blank, R., & Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology, 32, 277–307.CrossRefGoogle Scholar
  52. Thompson, S. K. (1992). Sampling. New York: Wiley.Google Scholar
  53. Thorell, K. E., & Ostlin, E. O. (1931). The national forest survey of Sweden. Journal of Forestry, 4, 585–591.Google Scholar
  54. Tkacz, B., Moody, B., Castillo, V., & Fenn, M. E. (2008). Forest health condition in North America. Environmental Pollution, 155, 409–425.CrossRefGoogle Scholar
  55. US Forest Service, Forest Health Monitoring (2011). http://fhm.fs..fed.us/fact/index.htm.
  56. Wulff, S. (2007). Consistency of forest damage assessment. In Symposium: Forest in a changing environment—Results of 20 years ICP forests monitoring Göttingen, 25.-28.10.2006. Edited by J. Eichhorn Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Nordwestdeutchen Forstlichen Versuchsanstalt.Band 142: 270–275. J.D. Sauerländer’s verlag Frankfurt Am Main.Google Scholar
  57. Wulff, S., Hansson, P., & Witzel, J. (2006). The applicability of national forest inventories for estimating forest damage outbreaks—Experiences from a Gremmeniella outbreak in Sweden. Canadian Journal of Forest Research, 36, 2605–2613.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sören Wulff
    • 1
  • Åke Lindelöw
    • 2
  • Lars Lundin
    • 3
  • Per Hansson
    • 4
  • Anna-Lena Axelsson
    • 1
  • Pia Barklund
    • 5
  • Sture Wijk
    • 6
  • Göran Ståhl
    • 1
  1. 1.Department of Forest Resource ManagementSwedish University of Agricultural SciencesUmeåSweden
  2. 2.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  5. 5.Department of Forest Mycology and PathologySwedish University of Agricultural SciencesUppsalaSweden
  6. 6.Swedish Forest AgencyJönköpingSweden

Personalised recommendations