Environmental Monitoring and Assessment

, Volume 184, Issue 4, pp 2389–2403 | Cite as

Development and use of a floristic quality index for coastal Louisiana marshes

  • Kari F. CretiniEmail author
  • Jenneke M. Visser
  • Ken W. Krauss
  • Gregory D. Steyer


The Floristic Quality Index (FQI) has been used as a tool for assessing the integrity of plant communities and for assessing restoration projects in many regions of the USA. Here, we develop a modified FQI (FQImod) for coastal Louisiana wetlands and verify it using 12 years of monitoring data from a coastal restoration project. Plant species that occur in coastal Louisiana were assigned a coefficient of conservatism (CC) score by a local group with expertise in Louisiana coastal vegetation. Species percent cover and both native and non-native species were included in the FQImod which was scaled from 0–100. The FQImod scores from the long-term monitoring project demonstrated the utility of this index for assessing wetland condition over time, including its sensitivity to a hurricane. Ultimately, the FQI developed for coastal Louisiana will be used in conjunction with other wetland indices (e.g., hydrology and soils) to assess wetland condition coastwide and these indices will aid managers in coastal restoration and management decisions.


Floristic quality index Coefficient of conservatism Louisiana Coastal restoration Wetland condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2011_2125_MOESM1_ESM.pdf (652 kb)
(PDF 652 KB)


  1. Allain, L., Smith, L., Allen, C., Vidrine, M. F., & Grace, J. B. (2006). A floristic quality assessment system for the coastal prairie of Louisiana. In Proceedings of the 19th North American prairie conference (pp. 1–18).Google Scholar
  2. Andreas, B. K., & Lichvar, R. W. (1995). Floristic index for assessment standards: A case study for northern Ohio. Wetlands Research Program Technical Report WRP-DE-8, Vicksburg, Mississippi, U.S. Army Corps of Engineers waterways Experiment Station.Google Scholar
  3. Andreas, B. K., Mack, J. J., & McCormac, J. J. (2004). Floristic quality assessment index (FQAI) for vascular plants and mosses for the state of Ohio. Columbus, Ohio: Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Group.Google Scholar
  4. Barras, J., Beville, S., Britsch, D., Hartley, S., Hawes, S., Johnston, J., et al. (2003). Historical and projected coastal Louisiana land changes: 1978–2050. U.S. Geological Survey Open-File Report 03-334 (Revised January 2004).Google Scholar
  5. Bourdaghs, M., Johnston, C. A., & Regal, R. R. (2006). Properties and performance of the floristic quality index in Great Lakes coastal wetlands. Wetlands 26(3), 718–735.CrossRefGoogle Scholar
  6. Callaway, J. C., Sullivan, G., Desmond, J. S., Williams, G. D., & Zedler, J. B. (2001). Assessment and monitoring. In J. B. Zedler (Ed.), Handbook for restoring tidal wetlands (pp. 271–335). Boca Raton: CRC.Google Scholar
  7. Castellanos, D., McGinnis, T., Landry, P., & Pontiff, D. (2007). 2007 operations, maintenance, and monitoring report for East Mud Lake Marsh Management (CS-20). Lafayette, Louisiana: Louisiana Department of Natural Resources, Coastal Restoration Division.Google Scholar
  8. Chabreck, R. H. (1972). Vegetation, water, and soil characteristics of the Louisiana coastal region. Louisiana State University Agricultural Experiment Station Bulletin No. 664, Baton Rouge, Louisiana, Louisiana State University.Google Scholar
  9. Cohen, M. J., Carstenn, S., & Lane, C. R. (2004). Floristic quality indices for biotic assessment of depressional marsh condition in Florida. Ecological Applications, 14(3), 784–794.CrossRefGoogle Scholar
  10. Ervin, G. N., Herman, B. D., Bried, J. T., & Holly, D. C. (2006). Evaluating non-native species and wetland indicator status as components of wetlands floristic assessment. Wetlands, 26(4), 1114–1129.CrossRefGoogle Scholar
  11. Folse, T. M., West, J. L., Hymel, M. K., Troutman, J. P., Sharp, L. A., Weifenbach, D., et al. (2008). A standard operating procedures manual for the coast-wide reference monitoring system-wetlands: Methods for site establishment, data collection, and quality assurance/quality control. Baton Rouge, Louisiana: Louisiana Coastal Protection and Restoration Authority, Office of Coastal Protection and Restoration.Google Scholar
  12. Herman, B. (2005). Testing the floristic quality assessment index in natural and created wetlands in Mississippi, USA. M. S. thesis, Mississippi State University, Mississippi State, MS, USA.Google Scholar
  13. Howard, R. J., Travis, S. E., & Sikes, B. A. (2008). Rapid growth of a Eurasian haplotype of Phragmites in a restored brackish marsh in Louisiana, USA. Biological Invasions, 10, 369–379.CrossRefGoogle Scholar
  14. Kentula, M. E., Brooks, R. P., Gwin, S. E., Holland, C. C., Sherman, A. D., & Sifneos, J. C. (1992). An approach to improving decision making in wetland restoration and creation. Corvallis, Oregon: U.S. Environmental Protection Agency, Environmental Research Laboratory.Google Scholar
  15. Krauss, K. W., Doyle, T. W., Doyle, T. J., Swarzenski, C. M., From, A. S., Day, R. H., et al. (2009). Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands, 29(1), 142–149.CrossRefGoogle Scholar
  16. Lopez, R. D., & Fennessy, M. S. (2002). Testing the floristic quality assessment index as an indicator of wetland condition. Ecological Applications, 12(2), 487–497.CrossRefGoogle Scholar
  17. Louisiana Coastal Wetlands Conservation and Restoration Task Force (LCWCRTF) (2006). Coastal wetlands Planning, Protection and Restoration Act (CWPPRA): A response to Louisiana’s land loss. Accessed 14 October 2008.
  18. Louisiana Department of Natural Resources, Coastal Restoration Division (LDNR/CRD) (2004). Strategic Online Natural Resources Information System, SONRIS 2000: User’s manual for hydrographic and emergent vegetation data management. Baton Rouge: Louisiana Department of Natural Resources.Google Scholar
  19. Mack, J. J. (2007). Developing a wetland IBI with statewide application after multiple testing iterations. Ecological Indicators, 7, 864–881.CrossRefGoogle Scholar
  20. McDonald, T. L., Erickson, W. P., & McDonald, L. L. (2000). Analysis of count data from before-after control-impact studies. Journal of Agricultural, Biological, and Environmental Statistics, 5(3), 262–279.CrossRefGoogle Scholar
  21. Miller, S. J., & Wardrop, D. H. (2006). Adapting the floristic quality assessment index to indicate anthropogenic disturbance in central Pennsylvania wetlands. Ecological Indicators, 6, 313–326.CrossRefGoogle Scholar
  22. Mitsch, W. J., & Wang, N. (2000). Large-scale coastal wetland restoration on the Laurentian Great Lakes: Determining the potential for water quality improvement. Ecological Engineering, 15, 267–282.CrossRefGoogle Scholar
  23. Pellegrin, D., & Hauber, D. P. (1999). Isozyme variation among populations of the clonal species, Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany, 63, 241–259.CrossRefGoogle Scholar
  24. Penfound, W.T., & Hathaway, E.S. (1938). Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs, 8(1), 4–56.CrossRefGoogle Scholar
  25. Poling, T. C., Banker, M. G., & Jablonski, L. M. (2003). Quadrat-level floristic quality index reflects shifts in composition of a restored tallgrass prairie (Ohio). Ecological Restoration, 21(2), 144–145.Google Scholar
  26. Rooth, J. E., Stevenson, J. C., & Cornwell, J. C. (2003). Increased sediment accretion rates following invasion by Phragmites australis: The role of litter. Estuaries, 26(2B), 475–483.CrossRefGoogle Scholar
  27. Saltonstall, K. (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. PNAS, 99(4), 2445–2449.CrossRefGoogle Scholar
  28. SAS Institute (2002). SAS/STAT user’s guide, version 9.1. Cary, North Carolina: SAS Institute.Google Scholar
  29. Steyer, G. D. (2008). Landscape analysis of vegetation change in coastal Louisiana following Hurricanes Katrina and Rita. Ph.D. dissertation, Louisiana State University, Baton Rouge, LA, USA.Google Scholar
  30. Steyer, G. D., Sasser, C. E., Visser, J. M., Swenson, E. M., Nyman, J. A., & Raynie, R. C. (2003). A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environmental Monitoring and Assessment, 81, 107–117.CrossRefGoogle Scholar
  31. Steyer, G. D., Twilley, R. R., & Raynie, R. C. (2006). An integrated monitoring approach using multiple reference sites to assess sustainable restoration in coastal Louisiana. In USDA Forest Service Proceedings RMRS-P-42CD.Google Scholar
  32. Swink, F., & Wilhelm, G. S. (1979). Plants of the Chicago Region, third edition, revised and expanded edition with keys. Lisle, Illinois: The Morton Arboretum.Google Scholar
  33. Swink, F., & Wilhelm, G. S. (1994). Plants of the Chicago region (4th ed.). Lisle, Illinois: The Morton Arboretum.Google Scholar
  34. Taft, J. B., Wilhelm, G. S., Ladd, D. M., & Masters, L. A. (1997). Floristic quality assessment for vegetation in Illinois a method for assessing vegetation integrity. Erigenia, 15, 3–95.Google Scholar
  35. Thayer, G. W., McTigue, T. A., Salz, R. J., Merkey, D. H., Burrows, F. M., & Gayaldo, P. F. (2005). Science-based restoration monitoring of coastal habitats, volume two: Tools for monitoring coastal habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23, Silver Spring, Maryland: NOAA National Centers for Coastal Ocean Science.Google Scholar
  36. Thieret, J. W. (1972). Aquatic and marsh plants of Louisiana: A check list. Louisiana Society of Horticultural Research Journal, 13(1), 1–45.Google Scholar
  37. Thomas, R. D., & Allen, C. M. (1993). Atlas of the vascular flora of Louisiana, volume I: Ferns and fern allies, conifers and monocotyledons. Baton Rouge, Louisiana: Louisiana Department of Wildlife and Fisheries.Google Scholar
  38. Thomas, R. D., & Allen, C. M. (1996). Atlas of the vascular flora of Louisiana, volume II: Dicotyledons Acanthaceae - Euphorbiaceae. Baton Rouge, Louisiana: Louisiana Department of Wildlife and Fisheries.Google Scholar
  39. Thomas, R. D., & Allen, C. M. (1998). Atlas of the vascular flora of Louisiana, volume III: Dicotyledons Fabaceae - Zygophyllaceae. Baton Rouge, Louisiana: Louisiana Department of Wildlife and Fisheries.Google Scholar
  40. United States Department of Agriculture (USDA), Natural Resource Conservation Service (2008). The PLANTS database. Baton Rouge, Louisiana: National Plant Data Center.
  41. U.S. EPA (2002). Methods for evaluating wetland condition: Using vegetation to assess environmental conditions in wetlands. Office of Water, U.S. Environmental Protection Agency, Washington DC, EPA-822-R-02-020.Google Scholar
  42. Visser, J. M., Sasser, C. E., Chabreck, R. H., & Linscombe, R. G. (1998). Marsh vegetation types of the Mississippi River Deltaic Plain, USA. Estuaries, 21(4B), 818–828.CrossRefGoogle Scholar
  43. Visser, J. M., Sasser, C. E., Chabreck, R. H., & Linscombe, R. G. (2000). Marsh vegetation types of the Chenier Plain, Louisiana, USA. Estuaries, 23(3), 318–327.CrossRefGoogle Scholar
  44. Weifenbach, D. K., & Clark, N. S. (2000). Three-year comprehensive monitoring report: Coast 2050 Region 4 East Mud Lake marsh management (CS-20). Baton Rouge, Louisiana: Louisiana Department of Natural Resources, Coastal Restoration Division.Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA)  2011

Authors and Affiliations

  • Kari F. Cretini
    • 1
    Email author
  • Jenneke M. Visser
    • 2
  • Ken W. Krauss
    • 3
  • Gregory D. Steyer
    • 1
  1. 1.National Wetlands Research Center, Coastal Restoration Assessment BranchU.S. Geological SurveyBaton RougeUSA
  2. 2.Department of Renewable Resources and Institute for Coastal Ecology and EngineeringUniversity of Louisiana LafayetteLafayetteUSA
  3. 3.National Wetlands Research CenterU.S. Geological SurveyLafayetteUSA

Personalised recommendations