Advertisement

Environmental Monitoring and Assessment

, Volume 184, Issue 4, pp 1929–1952 | Cite as

Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions

  • Amlan Kumar Patra
Article

Abstract

Enteric methane (CH4) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH4 is produced annually from enteric fermentation mainly from ruminants. Therefore, CH4 mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH4 mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH4 oxidation by methylotrophs, and genetic selection of low CH4-producing animals have emerged to decrease CH4 production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH4 mitigation as well. A combination of different CH4 mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH4 mitigation technologies that would be practically feasible and economically viable while improving ruminant production.

Keywords

Methane production Ruminants Mitigation strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, N., Kamra, D. N., Chaudhary, L. C., & Patra, A. K. (2006). Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. Journal of Applied Animal Research, 30, 1–4.Google Scholar
  2. Agarwal, N., Shekhar, C., Kumar, R., Chaudhary, L. C., & Kamra, D. N. (2009). Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Feed Science and Technology, 148, 321–327.CrossRefGoogle Scholar
  3. Alford, A. R., Hegarty, R. S., Parnell, P. F., Cacho, O. J., Herd, R. M., & Griffith, G. R. (2006). The impact of breeding to reduce residual feed intake on enteric methane emission from the Australian beef industry. Australian Journal of Experimental Agriculture, 46, 813–820.CrossRefGoogle Scholar
  4. Anderson, R. C., Callaway, T. R., Van Kessel, J. S., Jung, Y. S., Edrington, T. S., & Nisbet, D. J. (2003). Effect of select nitrocompounds on ruminal fermentation; an initial look at their potential to reduce economic and environmental costs associated with ruminal methanogenesis. Bioresource Technology, 90, 59–63.CrossRefGoogle Scholar
  5. Anderson, R. C., Carstens, G. E., Miller, R. K., Callaway, T. R., Schultz, C. L., Edrington, T. S., et al. (2006). Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresource Technology, 97, 2421–2426.CrossRefGoogle Scholar
  6. Anderson, R. C., Krueger, N. A., Stanton, T. B., Callaway, T. R., Edrington, T. S., Harvey, R. B., et al. (2008). Effects of select nitrocompounds on in vitro ruminal fermention during conditions of limiting or excess added reductant. Bioresource Technology, 99, 8655–8661.CrossRefGoogle Scholar
  7. Animut, G., Goetsch, A. L., Puchala, P., Patra, A. K., Sahlu, T., Varel, V. H. et al. (2008a). Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Animal Feed Science and Technology, 144, 212–227.CrossRefGoogle Scholar
  8. Animut, G., Goetsch, A. L., Puchala, P., Patra, A. K., Sahlu, T., Varel, V. H. et al. (2008b). Methane emission by goats consuming different sources of condensed tannins. Animal Feed Science and Technology, 144, 228–241.CrossRefGoogle Scholar
  9. Asanuma, N., Iwamoto, M., & Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science, 82, 780–787.CrossRefGoogle Scholar
  10. Atwood, G., & McSweeney, C. S. (2008). Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilization in the rumen. Australian Journal of Experimental Agriculture, 48, 28–37.CrossRefGoogle Scholar
  11. Beauchemin, K. A., & McGinn, S. M. (2006). Methane emissions from beef cattle: Effects of fumaric acid, essential oil and canola oil. Journal of Animal Science, 84, 1489–1496.Google Scholar
  12. Beauchemin, K. A., McGinn, S. M., & Petit, H. V. (2007). Methane abatement strategies for cattle: Lipid supplementation of diets. Canadian Journal of Animal Science, 87, 431–440.CrossRefGoogle Scholar
  13. Beauchemin, K. A., Kreuzer, M., O’Mara, F., & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27.CrossRefGoogle Scholar
  14. Beauchemin, K. A., McGinn, S. M., Benchaar, C., & Holtshausen, L. (2009). Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, 92, 2118–2127.CrossRefGoogle Scholar
  15. Benchaar, C., Pomar, C., & Chiquette, J. (2001). Evaluation of diet strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science, 81, 563–574.CrossRefGoogle Scholar
  16. Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., et al. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 92, 5512–5522.CrossRefGoogle Scholar
  17. Bowman, R. L., Croucher, J. C., & Picard, M. T. (1992). Assessment of the Pre-feasibility of Strategic Supplementation as an Opportunity for Reducing Methane Emissions in Gujarat, India. Washington, D.C.: Global Change Division, U.S. Environmental Protection Agency.Google Scholar
  18. Busquet, M., Calsamiglia, S., Ferret, A., Carro, M. D., & Kamel, C. (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science, 88, 4393–4404.CrossRefGoogle Scholar
  19. Callaway, T. R., Martin, S. A., Wampler, J. L., Hill, N. S., & Hill, G. M. (1997). Malate content of forage varieties commonly fed to cattle. Journal of Dairy Science, 80, 1651–1655.CrossRefGoogle Scholar
  20. Carulla, J. E., Kreuzer, M., Machmuller, A., & Hess, H. D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research, 56, 961–970.CrossRefGoogle Scholar
  21. Chaucheyras, F. G., Fonty, G., Bertin, G., & Gouet, P. (1995). In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 61, 3466–3467.Google Scholar
  22. Cook, S. R., Maiti, P. K., Chaves, A. V., Benchaar, C., Beauchemin, K. A., & McAllister, T. A. (2008). Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: In vitro assessment for their effects. Australian Journal of Experimental Agriculture, 48, 260–264.CrossRefGoogle Scholar
  23. Dong, Y., Bae, H. D., MaAllister, T. A., Mathison, G. W., & Cheng, K. J. (1999). Effects of exogenous fibrolytic enzymes, 2-bromoethanesulfonate, and monensin on fermentation in rumen simulation (RUSITEC) system. Canadian Journal of Animal Science, 79, 491–498.CrossRefGoogle Scholar
  24. Eckard, R. J., Grainger, C., & de Klein, C. A. M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science, 130, 47–56.CrossRefGoogle Scholar
  25. Evans, J. D., & Martin, S. A. (2000). Effects of thymol on ruminal micro-organisms. Current Microbiology, 41, 336–340.CrossRefGoogle Scholar
  26. Finlay, B. J., Esteban, G., Clarke, K. J., Williams, A. G., Embley, T. M., & Hirt, R. R. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters, 117, 157–162.CrossRefGoogle Scholar
  27. Foley, P. A., Kenny, D. A., Callan, J. J., Boland, T. M., & O’Mara, F. P. (2009). Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle. Journal of Animal Science, 87, 1048–1057.CrossRefGoogle Scholar
  28. Frumholtz P. P., Newbold C. J., & Wallace R. J. (1989). Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). Journal of Agricultural Science (Cambridge), 113, 169–172.CrossRefGoogle Scholar
  29. Garcia-Lopez, P. M., Kung, L. Jr., & Odom, J. M. I. (1996). In vitro inhibition of microbial methane production by 9,10- anthraquinone. Journal of Animal Science, 74, 2276–2284.Google Scholar
  30. Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrient from roughage and concentrate based feeds to methane. Animal Feed Science and Technology, 147, 72–89.CrossRefGoogle Scholar
  31. Grainger, C., Clarke, T., Beauchemin, K. A., McGinn, S. M., & Eckard, R. J. (2008). Supplementation with whole cottonseed reduces methane emissions and increases milk production of dairy cows offered a forage and cereal grain diet. Australian Journal of Experimental Agriculture, 48, 73–76.CrossRefGoogle Scholar
  32. Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C. et al. (2009). Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science, 89, 241–251.CrossRefGoogle Scholar
  33. Guan, H., Wittenberg, K. M., Ominski, K. H., & Krause, D. O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84, 1896–1906.CrossRefGoogle Scholar
  34. Gutierrez-Bañuelos, H., Anderson, R. C., Carstens, G. E., Slay, L. J., Ramlachan, N., Horrocks, S. M. et al. (2007). Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe, 13, 21–31.CrossRefGoogle Scholar
  35. Hao, X., Benke, M. B., Li, C., Larney, F. J., Beauchemin, K. A., & McAllister, T. A. (2010). Greenhouse gas emissions during composting of manure from cattle diets including corn dried distillers grains with solubles and condensed tannins. In Proceedings of abstracts, Greenhouse Gases and Animal Conference, October 3–8, 2010, Canada, p.30.Google Scholar
  36. Haque, N., Saraswat, M. L., & Sahoo, A. (2001). Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. Indian Journal of Animal Sciences, 71, 797–799.Google Scholar
  37. Hegarty, R. S., Goopy, J. P., Herd, R. M., & McCorkell, B. (2007). Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85, 1479–1486.CrossRefGoogle Scholar
  38. Hegarty, R. S., Bird, S. H., Vanselow, B. A., & Woodgate, R. (2008). Effects of the absence of protozoa from birth or from weaning on the growth and methane production of lambs. British Journal of Nutrition, 100, 1220–1227.CrossRefGoogle Scholar
  39. Hess, H. D., Monsalve, L. M., Lascano, C. E., Carulla, J. E., Diaz, T. E., & Kreuzer, M. (2003). Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Australian Journal of Agricultural Research, 54, 703–713.CrossRefGoogle Scholar
  40. Hess, H. D., Beuret, R. A., Lotscher, M., Hindrichsen, I. K., Machmüller, A., Carulla, J.E. et al. (2004). Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Animal Science, 79, 177–189.Google Scholar
  41. Hindrichsen, I. K., Wettstein, H. -R., Machmuller, A., & Kreuzer, M. (2006). Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture, Ecosystems and Environment, 113, 150–161.CrossRefGoogle Scholar
  42. Holter, J. E., Hayes, H. H., & Urban, W. E. Jr. (1992). Energy balance and lactation response in Holstein cows supplemented with cottonseed with or without calcium soap. Journal of Dairy Science, 75, 1480–3494.CrossRefGoogle Scholar
  43. Holtshausen, L., Chaves, A. V., Beauchemin, K. A., McGinn, S. M., McAllister, T. A., Odongo, N. E., Cheeke, P. R., &Benchaar, C. (2009). Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal Dairy Science, 92, 2809–2821.CrossRefGoogle Scholar
  44. Hook, S. E., Northwood, K. S., Wright, A. -D. G., & McBride, B. W. (2009). Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Applied and Environmental Microbiology, 75, 374–380.CrossRefGoogle Scholar
  45. IPCC (2007). Summary for Policymakers. In Solomon, S. D., Qin, M., Manning, Z., Chen, M., Marquis, K. B, Averyt, M. T., & Miller, H. L. (Eds.), Climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.Google Scholar
  46. Janssen, P. J., & Kirs, M. (2008). Structure of the archaeal community of the rumen. Applied and Environmental Microbiology, 74, 3619–3625.CrossRefGoogle Scholar
  47. Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.Google Scholar
  48. Jordan, E., Lovett, D. K., Hawkins, M., Callan, J. J., & O’Mara, F. P. (2006a). The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Animal Science, 82, 859–865.CrossRefGoogle Scholar
  49. Jordan, E., Lovett, D. K., Monahan, F. J., Callan, J., Flynn, B., & O’Mara, F. P. (2006b). Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. Journal of Animal Science, 84, 162–170.CrossRefGoogle Scholar
  50. Jordan, E., Kenny, D., Hawkins, M., Malone, R., Lovett, D. K., & O’Mara, F. P. (2006c). Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science, 84, 2418–2425.CrossRefGoogle Scholar
  51. Joyner, A. E. Jr., Brown, L. J., Fogg, T. J., & Rossi, R. T. (1979). Effect of monensin on growth, feed efficiency and energy metabolism of lambs. Journal of Animal Science, 48, 1065–1069.Google Scholar
  52. Kajikawa, H., Valdes, C., Hillman, K., Wallace, R. J., & Newbold, C. J. (2003). Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Letters in Applied Microbiology, 36, 354–357.CrossRefGoogle Scholar
  53. Kamra, D. N., Patra, A. K., Chatterjee, P. N., Kumar, R., Agarwal, N., & Chaudhary, L. C. (2008). Effect of plant extract on methanogenesis and microbial profile of the rumen of buffalo: A brief overview. Australian Journal of Experimental Agriculture, 48, 175–178.CrossRefGoogle Scholar
  54. Klita, P. T., Mathison, G. W., Fenton, T. W., & Hardin, R. T. (1996). Effects of alfalfa root saponins on digestive function in sheep. Journal of Animal Science, 74, 1144–1156.Google Scholar
  55. Kolver, E. S., Aspin, P. W., Jarvis, G. N., Elborough, K. M., & Roche, J. R. (2004). Fumarate reduces methane production from pasture fermented in continuous culture. Proceedings of the New Zealand Society of Animal Production, 64, 155–159.Google Scholar
  56. Kulling, D. R., Dohme, F., Menzi, H., Sutter, F., Lischer, P., & Kreuzer, M. (2002). Methane emissions of differently fed dairy cows and corresponding methane and nitrogen emissions from their manure during storage. Environmental Monitoring and Assessment, 79, 129–150.CrossRefGoogle Scholar
  57. Kung, L. Jr., Smith, K. A., Smagala, A. M., Endres, K. M., Bessett, C. A., Ranjit, N. K. et al. (2003). Effects of 9,10-anthraquinone on ruminal fermentation, total-tract digestion, and blood metabolite concentrations in sheep. Journal of Animal Science, 81, 323–328.Google Scholar
  58. Leahy, S. C., Kelly, W. J., Altermann, E., Ronimus, R. S., Yeoman, C. J., Pacheco, D. M. et al. (2010). The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One, 5, e8926. doi: 10.1371/journal.pone.0008926 CrossRefGoogle Scholar
  59. Lee, S. S., Hsu, J. T., Mantovani, H. C., & Russell, J. B. (2002). The effect of bovicin HC5, a bacteriocin from Streptococcus bovis BC5, on ruminal methane production in vitro. FEMS Microbiology Letters, 217, 51–55.Google Scholar
  60. Leng, R. A. (2008). The potential of feeding nitrate to reduce enteric methane production in ruminants. A Report to the Department of Climate Change, Commonwealth Government of Australia Canberra ACT Australia, pp. 90.Google Scholar
  61. LeVan T. D., Robinson, J. A., Ralph, J., Greening, R. C., Smolenski, W. J., Leedle, J. A. Z. et al. (1998). Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetomaculum ruminis. Applied and Environmental Microbiology, 64, 3429–2436.Google Scholar
  62. Lila, Z. A., Mohammed, N., Tatsuoka (Ajisaka), N., Kanda, S., Kurokawa, Y., & Itabashi, H. (2004). Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. Animal Science Journal, 75, 15–22.CrossRefGoogle Scholar
  63. Liu, Y., & Whitman, W. B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of NewYork Academy of Sciences, 1125, 171–189.CrossRefGoogle Scholar
  64. Lopez, S. M., McIntosh, F. M., Wallace, R. J., & Newbold, C. J. (1999). Effect of adding acetogenic bacteria on methane production by mixed rumen micro-organisms. Animal Feed Science and Technology, 78, 1–9.CrossRefGoogle Scholar
  65. Lovett, D. K., Lovell, S., Stack, L., Callan, J., Finlay, M., Conolly, J. et al. (2003). Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 84, 135–146.CrossRefGoogle Scholar
  66. Lynch, H. A., & Martin, S. A. (2002). Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science, 85, 2603–2608.CrossRefGoogle Scholar
  67. Machmüller, A., & Kreuzer, M. (1999). Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science, 79, 65–72.CrossRefGoogle Scholar
  68. Machmüller, A., Soliva, C. R., & Kreuzer, M. (2003a). Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reproduction Nutrition and Development, 43, 41–55.CrossRefGoogle Scholar
  69. Machmüller, A., Soliva, C. R., & Kreuzer, M. (2003b). Methane suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. British Journal of Nutrition, 90, 529–540.CrossRefGoogle Scholar
  70. Mao, H. -L., Wang, J. -K., Zhou, Y. -Y., & Liu, J. -X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 129, 56–62.CrossRefGoogle Scholar
  71. Martin, S. A. (1998). Manipulation of ruminal fermentation with organic acids: A review. Journal of Animal Science, 76, 3123–3132.Google Scholar
  72. Martin, S. A., & Nisbet, D. J. (1990). Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal micro-organisms in vitro. Journal of Animal Science, 68, 2142–2149.Google Scholar
  73. Martin S. A., Nisbet, D. J., & Dean, R. G. (1989). Influence of a commercial yeast supplement on the in vitro ruminal fermentation. Nutrition Reproduction International, 40, 395–403.Google Scholar
  74. Martin, C., Rouel, J., Jouany, J. P., Doreau, V., & Chilliard, Y. (2008). Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. Journal of Animal Science, 86, 2642–2650.CrossRefGoogle Scholar
  75. Mathieu, F., Jouany, J. P., Senaud, J., Bohatier, J., Berthin, G., & Mercier, M. (1996). The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reproduction Nutrition Development, 36, 271–287.CrossRefGoogle Scholar
  76. McAllister, T. A., & Newbold, C. J. (2008). Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48, 7–13.CrossRefGoogle Scholar
  77. McCrabb, G. J., Berger, K. T., Magner, T., May, C., & Hunter R. A. (1997). Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Australian Journal of Agricultural Research, 48, 323–329.CrossRefGoogle Scholar
  78. McGinn, S. M., Beauchemin, K. A., Coates, T., & Colombatto, D. (2004). Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science, 82, 3346–3356.Google Scholar
  79. McIntosh, F. M., Williams, P., Losa, R., Wallace, R. J., Beever, D. A., & Newbold, C. J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied and Environmental Microbiology, 69, 5011–5014.CrossRefGoogle Scholar
  80. McMahon, L. R., Majak, W., McAllister, T. A., Hall, J. W., Jones, G. A., Popp, J. D. et al. (1999). Effect of sainfoin on in vitro digestion of fresh alfalfa and bloat in steers. Canadian Journal of Animal Science, 79, 203–212.CrossRefGoogle Scholar
  81. Migeotte, M. V. (1948). Methane in earth’s atmosphere. Journal of Astrophysics, 107, 400–403.CrossRefGoogle Scholar
  82. Min, B. R., Pinchak, W. E., Fulford, J. D., & Puchala, R. (2005). Wheat pasture bloat dynamics, in vitro ruminal gas production, and potential bloat mitigation with condensed tannins. Journal of Animal Science, 83, 1322–1331.Google Scholar
  83. Min, B. R., Pinchak, W. E., Anderson, R. C., Fulford, J. D., & Puchala, R. (2006). Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. Journal of Anima Science, 84, 2546–2554.CrossRefGoogle Scholar
  84. Mitsumori, M., Ajisaka, N., Tajima, K., Kajikawa, H., & Kurihara, M. (2002). Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Letters in Applied Microbiology, 35, 251–255.CrossRefGoogle Scholar
  85. Mohammed, N., Lila, Z. A., Ajisaka, N., Hara, K., Mikuni, K., Hara, K. et al. (2004a). Inhibition of ruminal microbial methane production by beta-cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition, 88, 188–195.CrossRefGoogle Scholar
  86. Mohammed, N., Lila, Z. A., Tatsuoka (Ajisaka), N., Hara, K., Mikuni, K., Hara, K. et al. (2004b). Effects of cyclodextrin-iodopropane complex on methane production, ruminal fermentation and microbes, digestibility and blood metabolites in steers. Animal Science Journal, 75, 131–137.CrossRefGoogle Scholar
  87. Morgavi, D. P., Jouany, J. -P., & Martin, C. (2008). Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Australian Journal of Experimental Agriculture, 48, 69–72.CrossRefGoogle Scholar
  88. Moss, A. R., Jouany, J. -P., & Newbold, C. J. (2000). Methane production by ruminants: its contribution to global warming. Annales de Zootechnie, 49, 231–253.CrossRefGoogle Scholar
  89. Mutsvangwa, T., Edward, I. E., Topps, J. H., & Paterson, G. F. M. (1992). The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Animal Production, 55, 35–40.CrossRefGoogle Scholar
  90. Mwenya, B., Santoso, B., Sar, C., Gamo, Y., Kobayashi, T., Arai, I. et al. (2004). Effects of including 1,4-galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Animal Feed Science and Technology, 115, 313–326.CrossRefGoogle Scholar
  91. Newbold, C. J., & Rode, L. M. (2006). Dietary additives to control methanogenesis in the rumen. In Soliva, C. R., Takahashi, J., and Kreuzer, M. (Eds.), Greenhouse Gases and Animal Agriculture: An Update (pp. 138–147). Amsterdam: Elsevier. International Congress Series No. 1293.Google Scholar
  92. Newbold, C. J., Hassan, S. M. E., Wang, J., Ortega, M. E., & Wallace, R. J. (1997). Influence of foliage from African multipurpose tree on activity of rumen protozoa and bacteria. British Journal of Nutrition, 78, 237–249.CrossRefGoogle Scholar
  93. Odongo, N. E., Bagg, R., Vessie, G., Dick, P., Or-Rashid, M. M., Hook, S. E. et al. (2007a). Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science, 90, 1781–1788.CrossRefGoogle Scholar
  94. Odongo, N. E., Or-Rashid, M. M., Kebreab, E., France, J., & McBride, B. W. (2007b). Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. Journal of Dairy Science, 90, 1851–1858.CrossRefGoogle Scholar
  95. Ohene-Adjei, S., Chaves, A. V., McAllister, T. A., Benchaar, C., Teather, R. M., & Forster, R. J. (2008). Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microbial Ecology, 56, 234–242.CrossRefGoogle Scholar
  96. Olivier, J. G. J., van Aardenne, J. A., Dentener, F., Ganzeveld, L., & Peters, J. A. H. W. (2005). Recent trends in global greenhouse gas emissions: Regional trends and spatial distribution of key sources. In A. van Amstel (Ed.) Non-CO2 greenhouse gases (NCGG-4) (pp. 325–330). Rotterdam: Millipress.Google Scholar
  97. Patra, A. K., & Saxena, J. (2009). The effect and mode of action of saponins on microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews, 22, 204–219.CrossRefGoogle Scholar
  98. Patra, A. K., & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71, 1198–1222.CrossRefGoogle Scholar
  99. Patra, A. K., Kamra, D. N., & Agarwal, N. (2006a). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 128, 276–291.CrossRefGoogle Scholar
  100. Patra, A. K., Kamra, D. N., & Agarwal, N. (2006b). Effect of plants containing secondary metabolites on in vitro methanogenesis, enzyme profile and fermentation of feed with rumen liquor of buffalo. Animal Nutrition and Feed Technology, 6, 203–213.Google Scholar
  101. Patra, A. K., Kamra, D. N., & Agarwal, N. (2008). Effect of leaf extracts on fermentation of feds and methanogenesis with rumen liquor of buffalo. Indian Journal of Animal Science, 78, 91–96.Google Scholar
  102. Patra, A. K., Kamra, D. N., & Agarwal, N. (2010a). Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. Journal of the Science of Food and Agriculture, 90, 511–520.CrossRefGoogle Scholar
  103. Patra, A. K., Kamra, D. N., Bhar, R., Kumar, R., Chaturvedi, V. B., & Agarwal, N. (2010b). Effect of Terminalia chebula and Allium sativum on nutrient utilization and methane production in sheep. Journal of Animal Physiology and Animal Nutrition, 95, 187–191.CrossRefGoogle Scholar
  104. Pen, B., Takaura, K., Yamaguchi, S., Asa, R., & Takahashi, J. (2007). Effects of Yucca schidigera and Quillaja saponaria with or without β-1,4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Animal Feed Science and Technology, 138, 75–88.CrossRefGoogle Scholar
  105. Pinares-Patiño, C. S., Ulyatt, M. J., Lassey, K. R., Barry, T. N., & Holmes, C. W. (2003). Persistence of differences between sheep in methane emission under generous grazing conditions. Journal of Agricultural Science, 140, 227–233.CrossRefGoogle Scholar
  106. Puchala, R., Min, B. R., Goetsch, A. L., & Sahlu, T. (2005). The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, 83, 182–186.Google Scholar
  107. Sahoo, B., Saraswat, M. L., Haque, N., & Khan, M. Y. (1999). Energy balance and methane production in sheep fed chemically treated wheat straw. Small Ruminant Research, 35, 13–19.CrossRefGoogle Scholar
  108. Santoso, B., Mwenya, B., Sar, C., Gamo, Y., Kobayashi, T., Morikawa, R. et al. (2004). Effects of supplementing galacto-oligosaccharides, Yucca schidigera and nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livestock Production Science, 91, 209–217.CrossRefGoogle Scholar
  109. Sar, C., Santoso, B., Gamo, Y., Kobayashi, T., Shiozaki, S., Kimura, K. et al. (2004a). Effects of combination of nitrate with β-1,4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Australasian Journal of Animal Sciences, 17, 73–79.Google Scholar
  110. Sar, C., Santoso, B., Mwenya, B., Gamo, Y., Kobayashi, T., Morikawa, R. et al. (2004b). Manipulation of rumen methanogenesis by the combination of nitrate with β-1,4 galacto-oligosaccharides or nisin in sheep. Animal Feed Science and Technology, 115, 129–142.CrossRefGoogle Scholar
  111. Sar, C., Mwenya, B., Pen, B., Morikawa, R., Takaura, K., Kobayashi, T. et al. (2005). Effect of nisin on ruminal methane production and nitrate/nitrite reduction in vitro. Australian Journal of Agricultural Research, 56, 803–810.CrossRefGoogle Scholar
  112. Sauer, F. D., Fellner, V., Kinsman, R., Kramer, J. K., Jackson, H. A., Lee, A. J. et al. (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. Journal of Animal Science, 76, 906–914.Google Scholar
  113. Singh, G. P. (2001). Livestock production and environmental protection. In Proceedings of the 10th Animal Nutrition Conference (pp. 211–221), National Dairy Research Institute, Karnal, Haryana, India.Google Scholar
  114. Sirohi, S., Michaelowa, A., & Sirohi, S. K. (2007). Mitigation options for enteric methane emissions from dairy animals: An evaluation for potential CDM project in India. Mitigation and Adaptation Strategies for Global Change, 12, 259–274.CrossRefGoogle Scholar
  115. Sliwinski, B. J., Solvia, C. R., Machmuller, A., Kreuzer, M. (2002). Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Animal Feed Science and Technology, 101, 101–114.CrossRefGoogle Scholar
  116. Srivastava, A. K., & Garg, M. R. (2002). Use of sulfur hexafluoride tracer technique for measurement of methane emission from ruminants. Indian Journal of Dairy Science, 55, 36–39.Google Scholar
  117. Steinfeld, H., Costales, A., Rushton, J., Scherf, B., Bennett, T., & Hall, D. (2006). Livestock report 2006. Rome: FAO.Google Scholar
  118. Thornton, J. H., & Owens, F. N. (1981). Monensin supplementation and in vivo methane production by steers. Journal of Animal Science, 52, 628–634.Google Scholar
  119. Trei, J. E., Parish, R. C., Singh, Y. K., & Scott G. C. (1972). Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. Journal of Dairy Science, 54, 536–540.CrossRefGoogle Scholar
  120. Ulyatt, M. J., Lassey, K. R., Shelton, I. D., & Walker, C. F. (2002). Methane emission from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand. New Zealand Journal of Agricultural Research, 45, 227–234.CrossRefGoogle Scholar
  121. Ungerfeld, E. M., Kohn, R. A., Wallace, R. J., & Newbold, C. J. (2007). A meta-analysis of fumarate effects on methane production in ruminal batch cultures. Journal of Animal Science, 85, 2556–2563.CrossRefGoogle Scholar
  122. Van Nevel, C. J., & Demeyer, D. I. (1996). Control of rumen methanogenesis. Environmental Monitoring and Assessment, 42, 73–97.CrossRefGoogle Scholar
  123. Van Vugt, S. J., Waghorn, G. C., Clark, D. A., & Woodward, S. L. (2005). Impact of monensin on methane production and performance of cows fed forage diets. Proceedings of the New Zealand Society of Animal Production, 65, 362–366.Google Scholar
  124. Waghorn, G. C., Tavendale, M. H., & Woodfield, D. R. (2002). Methanogenesis from forages to sheep. Proceedings of the New Zealand Society of Grassland Association, 64, 167–171.Google Scholar
  125. Waghorn, G. C., Clark, H., Taufa, V., & Cavannagh, A. (2007). Monensin controlled release capsules for improved production and mitigating methane in dairy cows fed pasture. Proceedings of the New Zealand Society of Animal Production, 67, 266–271.Google Scholar
  126. Wallace, R. J., Wood, T. A., Rowe, A., Price, J., Yanez, D. R., Williams, S. P. et al. (2006). Encapsulated fumaric acid as a means of decreasing ruminal methane emissions. International Congress Series, 1293, 148–151.CrossRefGoogle Scholar
  127. Wang, C. J., Wang, S. P., & Zhou, H. (2009). Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Animal Feed Science and Technology, 148, 157–166.CrossRefGoogle Scholar
  128. Wedegaertner, T. C., & Johnson, D. E. (1983). Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. Journal of Animal Science, 57, 168–177.Google Scholar
  129. Wedlock, D. N., Pedersen, G., Denis, M., Dey, D., Janssen, P. H., & Buddle, B. M. (2010). Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. New Zealand Veterinary Journal, 58, 29–36.CrossRefGoogle Scholar
  130. Weimer, P. J. (1998). Manipulating ruminal fermentation: a microbial ecological perspective. Journal of Animal Science, 76, 3114–3122.Google Scholar
  131. Williams, Y. J., Rea, S. M., Popovski, S., Pimm, C. L., Williams, A. J., Toovey, A. F. et al. (2008). Responses of sheep to a vaccination of entodinal or mixed rumen protozoal antigens to reduce rumen protozoal numbers. British Journal of Nutrition, 99, 100–109.CrossRefGoogle Scholar
  132. Wina, E., Muetzel, S., Hoffmann, E., Makkar, H. P. S., & Becker, K. (2005). Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology, 121, 159–174.CrossRefGoogle Scholar
  133. Woodward, S. L., Waghorn, G. C., Ulyatt, M. J., & Lassey, K. R. (2001). Early indication that feeding lotus will reduce methane emission from ruminants. Proceedings of the New Zealand Society of Animal Production, 61, 23–26.Google Scholar
  134. Woodward, S. L., Waghorn, G. C., Lassey, K. R., & Laboyrie, P. G. (2002). Does feeding sulla (Hedysarum coronarium) reduce methane emission from dairy cows? Proceedings of the New Zealand Society of Animal Production, 62, 227–230.Google Scholar
  135. Wright, A. -D. G., Kennedy, P., O’Neill, C. J., Toovey, A. F., Popovski, S., Rea, S. M. et al. (2004). Reducing methane emission in sheep by immunization against rumen methanogens. Vaccine, 22, 3976–3985.CrossRefGoogle Scholar
  136. Yuan, Z. P., Zhang, C. M., Zhou, L., Zou, C. X., Guo, Y. Q., Li, W. T., et al. (2007). Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. Journal of Animal and Feed Sciences, 16(Supplement 2), 560–565.Google Scholar
  137. Zhou, M., Hernandez-Sanabria, E., & Guan, L. L. (2009). Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Applied and Environmental Microbiology, 75, 6524–6533.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Animal NutritionWest Bengal University of Animal and Fishery SciencesKolkataIndia

Personalised recommendations