Environmental Monitoring and Assessment

, Volume 184, Issue 2, pp 655–678 | Cite as

The BIOTA Biodiversity Observatories in Africa—a standardized framework for large-scale environmental monitoring

  • Norbert Jürgens
  • Ute Schmiedel
  • Daniela H. Haarmeyer
  • Jürgen Dengler
  • Manfred Finckh
  • Dethardt Goetze
  • Alexander Gröngröft
  • Karen Hahn
  • Annick Koulibaly
  • Jona Luther-Mosebach
  • Gerhard Muche
  • Jens Oldeland
  • Andreas Petersen
  • Stefan Porembski
  • Michael C. Rutherford
  • Marco Schmidt
  • Brice Sinsin
  • Ben J. Strohbach
  • Adjima Thiombiano
  • Rüdiger Wittig
  • Georg Zizka
Article

Abstract

The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.

Keywords

Diversity Global change Permanent plot Sampling scheme Transect Vegetation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10661_2011_1993_MOESM1_ESM.docx (12 kb)
(DOCX 11.8 KB)
10661_2011_1993_MOESM2_ESM.docx (13 kb)
(DOCX 12.5 KB)
10661_2011_1993_MOESM3_ESM.xlsx (23 kb)
(XLSX 22.9 KB)

References

  1. Aamlid, D., Canullo, R., & Starlinger, F. (Eds.) (2007). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests—Part VIII: Assessment of ground vegetation (Updated 10/2007). http://www.icp-forests.org/pdf/manual8.pdf. Accessed 26 July 2010.
  2. Aïdoud, A., Jauffret, S., & Sakona, Y., (2008). Long-term environmental monitoring in a circum-Saharan network: The ROSELT/OSS experience. OSS Synthesis Collection 3. Tunis: OSS, Tunis.Google Scholar
  3. Alexander, R., & Millington, A. C. (Eds.) (2000). Vegetation mapping: From patch to planet. Chichester: Wiley.Google Scholar
  4. Anyamba, A., & Eastman, J. R. (1996). Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation. International Journal of Remote Sensing, 17, 2533–2548.Google Scholar
  5. Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11, 1504–1513.Google Scholar
  6. Araya, Y. N., Schmiedel, U., & von Witt, C. (2009). Linking ‘citizen scientists’ to professionals in ecological research, examples from Namibia and South Africa. Conservation Evidence, 6, 11–17.Google Scholar
  7. Ash, N., Jürgens, N., Leadley, P., Alkemade, R., Araújo, M. B., Asner, G. P., et al. (2009). bioDISCOVERY: Assessing, monitoring and predicting biodiversity change. bioDISCOVERY Science Plan and Implementation Strategy. DIVERSITAS Rep. 7. DIVERSITAS, Paris, http://www.diversitas-international.org/uploads/File/bioDiscovery_sp_final.pdf. Accessed 26 July 2010.
  8. Balinski, M., & Ramirez, V. (1999). Parametric methods of apportionment, rounding and production. Mathematical Social Science, 37, 107–122.Google Scholar
  9. Balmford, A., Crane, P., Dobson, A., Green, R. E., & Mace, G. (2005). The 2010 challenge: Data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society B, 360, 221–228.Google Scholar
  10. Berendsohn, W. G. (1997). A taxonomic information model for botanical databases: The IOPI Model. Taxon, 46, 283–309.Google Scholar
  11. Bischoff, C., & Dröschmeister, R. (Eds.) (2000). European monitoring for nature conservation. Schriftenreihe für Lanschaftspflege und Naturschutz 62 (199 pp.). Bonn: Bundesamt für Naturschutz.Google Scholar
  12. Blaum, N., & Wichmann, M. (2007). Short term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. Journal of Animal Ecology, 76, 1116–1127.Google Scholar
  13. Botta-Dukát, Z., Kovács-Láng, E., Rédei, T., Kertész, M., & Garadnai, J. (2007). Statistical and biological consequences of preferential sampling in phytosociologiy: Theoretical considerations and a case study. Folia Geobotanica, 42, 141–152.Google Scholar
  14. Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K., et al. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57, 229–247.Google Scholar
  15. Bunce, R. G. H. (2000). The experience of the Countryside Survey in Great Britain for monitoring biodiversity of the wider countryside. In C. Bischoff & R. Dröschmeister (Eds.), European monitoring for nature conservation. Schriftenreihe für Lanschaftspflege und Naturschutz 62 (pp. 95–104). Bonn: Bundesamt für Naturschutz.Google Scholar
  16. Carpenter, S. R., DeFries, R., Dietz, T., Mooney, H. A., Polasky, S., Reid, W. V., et al. (2006). Millennium ecosystem assessment: Research needs. Science, 314, 257–258.Google Scholar
  17. Costanza, R., Fisher, B., Mulder, K., Liu, S., & Christopher, T. (2007). Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics, 61, 478–491.Google Scholar
  18. Dengler, J. (2008). Pitfalls in small-scale species–area sampling and analysis. Folia Geobotanica, 43, 269–287.Google Scholar
  19. Dengler, J. (2009a). Which function describes the species–area relationship best?—A review and empirical evaluation. Journal of Biogeography, 36, 728–744.Google Scholar
  20. Dengler, J. (2009b). A flexible multi-scale approach for standardised recording of plant species richness patterns. Ecological Indicators, 9, 1169–1178.Google Scholar
  21. Dengler, J., & Oldeland, J. (2010). Effects of sampling protocol on the shapes of species richness curves. Journal of Biogeography, 37, 1698–1705.Google Scholar
  22. Dengler, J., Löbel, S., & Dolnik, C. (2009). Species constancy depends on plot size—a problem for vegetation classification and how it can be solved. Journal of Vegetation Science, 20, 754–766.Google Scholar
  23. Dengler, J., Jansen, F., Glöckler, F., Peet, R. K., De Cáceres, M., Chytrý, M., et al. (2011). The Global Index of Vegetation-Plot Databases (GIVD): A new resource for vegetation science. Journal of Vegetation Science, 22. doi:10.1111/j.1654-1103.2011.01265.x.Google Scholar
  24. Dierschke, H. (1994). Pflanzensoziologie—Grundlagen und Methoden. Stuttgart: Ulmer.Google Scholar
  25. Dobson, A., Lodge, D., Alder, J., Cumming, G. S., Keymer, J., McGlade, J., et al. (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology, 87, 1915–1924.Google Scholar
  26. Dolnik, C. (2003). Artenzahl-Areal-Beziehungen von Wald- und Offenlandgesellschaften—Ein Beitrag zur Erfassung der botanischen Artenvielfalt unter besonderer Berücksichtigung der Flechten und Moose am Beispiel des Nationalparks Kurischen Nehrung (Russland). Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg, 62, 1–183.Google Scholar
  27. Duro, D., Coops, N. C., Wulder, M. A., & Han, T. (2007). Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography, 31, 235–260.Google Scholar
  28. Falk, T. (2008). Communal farmers’ natural resource use and biodiversity preservation—A new institutional economic analysis from case studies in Namibia and South Africa. Göttingen: Cuvillier.Google Scholar
  29. FAO (Ed.) (1990). Guidelines for soil description (3rd ed.). Rome: FAO.Google Scholar
  30. FAO (Ed.) (2006). Guidelines for soil description (4th ed.). Rome: FAO.Google Scholar
  31. Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, A. F., Guégan, J.-F., et al. (2009). Spatial species-richness gradients across scales: A meta-analysis. Journal of Biogeography, 36, 132–147.Google Scholar
  32. Fischer, M., Kalko, E. K. V., Linsenmair, K. E., Pfeiffer, S., Prati, D., Schulze, E.-D., et al. (2010). Exploratories for large-scale and long-term functional biodiversity research. In F. Müller, C. Baessler, H. Schubert, & S. Klotz (Eds.), Long-term ecological research—between theory and application (pp. 429–443). Berlin: Springer.Google Scholar
  33. Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.Google Scholar
  34. Gaston, K. J., & Spicer, J. I. (2005). Biodiversity: An introduction (2nd ed., p. 192). Malden, MA: Blackwell.Google Scholar
  35. Giere, P., & Zeller, U. (2005). Small mammal diversity and reproduction along a transect in Namibia (BIOTA S 07). In B. Huber, J. Sinclair, & K. H. Lampe (Eds.), African biodiversity: Molecules, organisms, ecosystems (pp. 305–313). Berlin: Springer.Google Scholar
  36. Goetze, D., Karlowski, U., Tockner, K., Watve, A., Riede, K., & Porembski, S. (2008). Spatial and temporal dimensions of biodiversity dynamics. In W. Barthlott, K. E. Linsenmaier, & S. Porembski (Eds.), Biodiversity: Structure and function. In UNESCO (Ed.), Encyclopedia of Life Support Systems (EOLSS) (pp. 166–208). Oxford EOLSS.Google Scholar
  37. Grainger, A. (2009). Towards a new global forest science. International Forestry Review, 11, 126–133.Google Scholar
  38. Haarmeyer, D. H., Luther-Mosebach, J., Dengler, J., Schmiedel, U., Finckh, M., Berger, K., et al. (2010). The BIOTA Observatories. In N. Jürgens, D. H. Haarmeyer, J. Luther-Mosebach, J. Dengler, M. Finckh, & U. Schmiedel (Eds.), Biodiversity in southern Africa. Volume 1: Patterns at local scale—the BIOTA Observatories (pp. 6–801). Göttingen: Hess.Google Scholar
  39. Hahn-Hadjali, K., Schmidt, M., & Thiombiano, A. (2006). Phytodiversity dynamics in pastured and protected West African savannas. In S. A. Ghazanfar & H. J. Beentje (Eds.), Taxonomy and ecology of African Plants: Their conservation and sustainable use—Proceedings of the 17th AETFAT Congress Addis Ababa 21.-26.09.2003 (pp. 351–359). Kew: Royal Botanic Gardens.Google Scholar
  40. Henschel, J. R., Grohmann, C., Siteketa, V., & Linsenmair, K. E. (2010). Monitoring tenebrionid beetle biodiversity in Namibia. African Study Monographs, Supplementary Issue, 40, 117–128.Google Scholar
  41. Hereford, R., Webb, R. H., & Longpre, C. I. (2006). Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001. Journal of Arid Environments, 67, 13–34.Google Scholar
  42. Heywood, V. H., & Watson, R. T. (Eds.) (1995). Global biodiversity assessment (1140 pp.). Cambridge: Cambridge University Press.Google Scholar
  43. Hintermann, U., Weber, D., & Zangger, A. (2000). Biodiversity monitoring in Switzerland. Schriftenreihe für Lanschaftspflege und Naturschutz, 62, 47–58.Google Scholar
  44. Hoffmann, A., & Zeller, U. (2005). Influence of variations in land use intensity on species diversity and abundance of small mammals in the Nama Karoo, Namibia. Belgian Journal of Zoology, 135, 91–96.Google Scholar
  45. Hoffmann-Kroll, R., Benzler, A., Schäfer, D., & Seibel, S. (2000). Setting up national biodiversity monitoring for nature conservation in Germany—the Ecological Area Sampling (EAS). Schriftenreihe für Lanschaftspflege und Naturschutz, 62, 79–94.Google Scholar
  46. Hüttich, C., Gessner, U., Herold, M., Strohbach, B. J., Schmidt, M., Keil, M., et al. (2009). On the suitability of MODIS time series metrics to map vegetation types in dry savanna ecosystems: A case study in the Kalahari of NE Namibia. Remote Sensing, 1, 620–643.Google Scholar
  47. IUSS Working Group WRB (2006). World reference base for soil resources 2006: A framework for international classification, correlation and communication. World Soil Resources Reports, 103. Rome: FAO.Google Scholar
  48. Jansen, F., & Dengler, J. (2010). Plant names in vegetation databases—a neglected source of bias. Journal of Vegetation Science, 21, 1179–1186.Google Scholar
  49. Jürgens, N. (1998). Biodiversity monitoring transect analysis. In W. Barthlott & M. Gutmann (Eds.), Biodiversitätsforschung in Deutschland. Potentiale und Perspektiven (pp. 1–73). Bad Neuenahr-Ahrweiler.Google Scholar
  50. Jürgens, N. (2004). BIOLOG—Africa. Research towards sustainable use and conservation of biodiversity in Africa. Introduction. In E. Beck, W. G. Berendsohn, M. Boutros, M. Denich, K. Henle, N. Jürgens, et al. (Eds.), Sustainable use and conservation of biological diversity—A challenge for society. Proceedings of the International Symposium Berlin, 1–4 December 2003 (pp. 130–131). Berlin: Federal Ministry of Education and Research.Google Scholar
  51. Jürgens, N. (2006). Recent change of flora and vegetation in Namibia—A brief review of dynamics, drivers and scientific approaches. In H. Leser (Ed.), The changing culture and Nature of Namibia: Case studies. The Sixth Namibia Workshop Basel 2005. In Honour of Dr. h. c. Carl Schlettwein (1925–2005) (pp. 91–108). Basel: Basler Afrika Bibliographien.Google Scholar
  52. Kim, E.-S. (2006). Development, potentials, and challenges of the International Long-Term Ecological Research (ILTER) Network. Ecological Research, 21, 788–793.Google Scholar
  53. Koulibaly, A., Goetze, D., Traoré, D., & Porembski, S. (2006). Protected versus exploited savanna: Characteristics of the Sudanian vegetation in Ivory Coast. Candollea, 61, 425–452.Google Scholar
  54. Krug, C. B., Esler, K. J., Hoffman, M. T., Henschel, J., Schmiedel, U., & Jürgens, N. (2006). North–South cooperation through BIOTA: An interdisciplinary monitoring programme in arid and semi-arid southern Africa. South African Journal of Science, 102, 187–190.Google Scholar
  55. Lájer, K. (2007). Statistical tests as inappropriate tools for data analysis performed on non-random samples of plant communities. Folia Geobotanica, 42, 115–122.Google Scholar
  56. Lecointre, G., & Le Guyader, H. (2006). Biosystematik—Alle Organismen im Überblick. Berlin: Springer.Google Scholar
  57. Loreau, M., & Olivieri, I. (1999). Diversitas: An international programme of biodiversity science. Trends in Ecology and Evolution, 14, 2–3.Google Scholar
  58. Mace, G. M., Cramer, W., Díaz, S., Faith, D. P., Larigauderie, A., Le Prestre, P., et al. (2010). Biodiversity targets after 2010. Current Opinion in Environmental Sustainability, 2, 3–8.Google Scholar
  59. Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T. R., Wright, J., Almeida, S., et al. (2002). An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13, 439–450.Google Scholar
  60. Mayer, C., Soka, G., & Picker, M. (2006). The importance of monkey beetle (Scarabaeidae: Hopliini) pollination for Aizoaceae and Asteraceae in grazed and ungrazed areas at Paulshoek, Succulent Karoo. Journal of Insect Conservation, 10, 323–333.Google Scholar
  61. McClean, C. J., Doswald, N., Küper, W., Sommer, J. H., Barnard, P., & Lovett, J. C. (2006). Potential impacts of climate change on sub-Saharan African plant priority area selection. Diversity and Distribution, 12, 645–655.Google Scholar
  62. Medinski, T. V., Mills, A. J., Esler, K. J., Schmiedel, U., & Jürgens, N. (2010). Do soil properties constrain species richness? Insights from boundary line analysis across several biomes in south western Africa. Journal of Arid Environments, 74, 1052–1060.Google Scholar
  63. Mills, A. J., Fey, M. V., Gröngröft, A., Petersen, A., & Medinski, T. V. (2006). Unravelling the effects of soil properties on water infiltration: Segmented quantile regression on a large data set from arid south-west Africa. Australian Journal of Soil Research, 44, 783–797.Google Scholar
  64. Muche, G., & Finckh, M. (2009). BIOTA Base short manual. Biocentre Klein Flottbek, University of Hamburg, Hamburg. http://www.biota-africa.org/downloads/biotabase/BIOTABaseManual.pdf. Accessed 26 July 2010.
  65. Muche, G., Hillmann, T., Suwald, A., & Jürgens, N. (2010). Data access and availability: BIOTA data facility. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa 2: Patterns and processes at regional scale (pp. 337–342). Göttingen & Windhoek: Hess.Google Scholar
  66. Musil, C. F., van Heerden, P. D. R., Cilliers, C. D., & Schmiedel, U. (2009). Mild experimental climate warming induces metabolic impairment and massive mortalities in southern African quartz field succulents. Environmental and Experimental Botany, 66, 79–87.Google Scholar
  67. Mutke, J., & Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. In I. Friis & H. Balslev (Eds.), Plant diversity and complexity patterns—local, regional and global dimensions—Proceedings of an international symposium held at the Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25–28 May, 2003 (pp. 521–537). Biologiske Skrifter, 55. Copenhagen: Reitzels.Google Scholar
  68. Noss, R. F. (1990). Indicators for monitoring biodiversity: A hierarchical approach. Conservation Biology, 4, 355–364.Google Scholar
  69. O’Connor, T. G., & Roux, P. W. (1995). Vegetation changes (1947–1971) in a semi-arid, grassy dwarf shrubland in the Karoo, South Africa: Influence of rainfall variability and grazing by sheep. Journal of Applied Ecology, 29, 247–260.Google Scholar
  70. Oldeland, J., Wesuls, D., Rocchini, D., Schmidt, M., & Jürgens, N. (2010). Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecological Indicators, 10, 390–396.Google Scholar
  71. Palomares, A., & Ramirez, V. (2003). Thresholds of the divisor methods. Numerical Algorithms, 34, 405–415.Google Scholar
  72. Pauli, H., Gottfried, M., Hohenwallner, D., Reiter, K., Casale, R., & Grabherr, G. (Eds.) (2004). The GLORIA Field Manual—Multi-Summit Approach. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  73. Pauli, H., Gottfried, M., Klettner, C., Friedmann, B., Laimer, S., & Grabherr, G. (Eds.) (2009). Amendment to the 4th-GLORIA Field Manual. Draft, July 2009. Vienna: University of Vienna & Austrian Academy of Sciences. http://www.gloria.ac.at/downloads/AMENDMENTS_GLORIA_Manual__DRAFT_2009-07_f.pdf. Accessed 26 July 2010.
  74. Peet, R. K., Wentworth, T. R., & White, P. S. (1998). A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 63, 262–274.Google Scholar
  75. Pereira, H., & Cooper, H. D. (2006). Towards the global monitoring of biodiversity change. Trends in Ecology and Evolution, 21, 123–129.Google Scholar
  76. Peters, J. (2010). Plant diversity patterns at different spatial scales in a semi-arid savanna ecosystem in central Namibia. Diplom thesis in Landscape Ecology & Nature Conservation, University of Greifswald. Also available from: http://www.biologie.uni-hamburg.de/bzf/syst/Diplom_thesis_Jan_Peters_2009.pdf.
  77. Petersen, A. (2008). Pedodiversity of southern African drylands. Hamburger Bodenkundliche Arbeiten 62. Hamburg: Verein zur Förderung der Bodenkunde in Hamburg.Google Scholar
  78. Petersen, A., Gröngröft, A., & Miehlich, G. (2010). Methods to quantify the pedodiversity of 1 km2 areas—results from southern African drylands. Geoderma, 155, 140–146.Google Scholar
  79. Popp, A., Blaum, N., & Jeltsch, F. (2009a). Ecohydrological feedback mechanisms in arid rangelands: Simulating the impacts of topography and land use. Basic and Applied Ecology, 10, 319–329.Google Scholar
  80. Popp, A., Vogel, M., Blaum, N., & Jeltsch, F. (2009b). Scaling up ecohydrological processes: Role of surface water flow in water-limited landscapes. Journal of Geophysical Research—Biogeoscience, 114, Article G04013. doi:10.1029/2008JG000910.Google Scholar
  81. Pröpper, M. (2009). Culture and biodiversity in central Kavango, Namibia (p. 440). Berlin: Reimer.Google Scholar
  82. Pufal, G., Mayer, C., Porembski, S., & Jürgens, N. (2008). Factors affecting fruit set in Aizoaceae species of species of the Succulent Karoo. Basic and Applied Ecology, 9, 401–409.Google Scholar
  83. Reineking, B., Veste, M., Wissel, C., & Huth, A. (2006). Environmental variability and allocation trade-offs maintain species diversity in a process-based model of succulent plant communities. Ecological Modelling, 199, 486–504.Google Scholar
  84. Richards, J. A., & Xiuping, J. (2006). Remote sensing digital image analysis: An introduction (4th ed.). Berlin: Springer.Google Scholar
  85. Roleček, J., Chytrý, M., Hájek, M., Lvončík, S., & Tichý, L. (2007). Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism! Folia Geobotanica, 42, 199–208.Google Scholar
  86. Ruxton, G. D., & Colegrave, N. (2006). Experimental design for the life sciences (2nd ed.). New York: Oxford University Press.Google Scholar
  87. Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.Google Scholar
  88. Schmidt, M., Agonyissa, D., Ouédraogo, A., Hahn-Hadjali, K., Thiombiano, A., Koulibaly, A., et al. (2010). Changes in plant species composition following a climatic gradient in West Africa. In X. van der Burgt, J. van der Maesen, J.-M. Onana (Eds.), Systematics and conservation of African Plants. Proceedings of the 18th AETFAT Congress, Yaoundé, Cameroon (pp. 823–828). Kew: Royal Botanical Gardens.Google Scholar
  89. Schmiedel, U., & Jürgens, N. (2005). Biodiversity Observatories. A new standardised monitoring tool for biodiversity studies. Basic Applied Dryland Research, 1, 87–91.Google Scholar
  90. Schmiedel, U., Dengler, J., Luther-Mosebach, J., Gröngröft, A., Muche, G., Petersen, A., et al. (2010a). Patterns and dynamics of vascular plant diversity along the BIOTA transects in southern Africa. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa. Volume 2: Patterns and processes at regional scale (pp. 118–135). Göttingen: Hess.Google Scholar
  91. Schmiedel, U., Mtuleni, V. S., Christiaan, R. A., Isaacks, R. S., Kotze, D., Lot, M. J., et al. (2010b). The BIOTA para-ecologist programme towards capacity development and knowledge exchange. In U. Schmiedel & N. Jürgens (Eds.), Biodiversity in southern Africa. Volume 2: Patterns and processes at regional scale (pp. 319–325). Göttingen: Hess.Google Scholar
  92. Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Broderson, W. D. (2002). Field book for describing and sampling soils. Version 2.0. Lincoln (NE): USDA Natural Resources Conservation Service, National Soil Survey Center.Google Scholar
  93. Scholes, R. J., Mace, G. M., Turner, W., Geller, G. N., Jürgens, N., Larigaudrie, A., et al. (2008). Toward a global biodiversity observing system. Science, 321, 1044–1045.Google Scholar
  94. Shmida, A. (1984). Whittaker’s plant diversity sampling method. Israel Journal of Botany, 33, 41–46.Google Scholar
  95. Sommer, J. H., Kreft, H., Kier, G., Jetz, W., Mutke, J., & Barthlott, W. (2010). Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society B-Biological Science, 277, 2271–2280.Google Scholar
  96. Stohlgren, T. J. (2007). Measuring plant diversity—lessons from the field. Oxford: Oxford University Press.Google Scholar
  97. Stohlgren, T. J., Falkner, M. B., & Schell, L. D. (1995). A modified-Whittaker nested vegetation sampling method. Vegetatio, 117, 113–121.Google Scholar
  98. Storch, D., Marquet, P. A., & Brown, J. H. (Eds.) (2007). Scaling biodiversity. Cambridge: Cambridge University Press.Google Scholar
  99. Strohbach, B. J. (2001). Vegetation survey of Namibia. Journal of the Scientific Society of Namibia, 49, 1–31.Google Scholar
  100. Taagepera, R., & Shugart, M. S. (1989). Seats and votes: The effects and determinants of electoral systems (p. 292). New Haven: Yale University Press.Google Scholar
  101. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.Google Scholar
  102. Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Gröngröft, A., Schiffers, K., et al. (2010). Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology, 3, 226–237.Google Scholar
  103. Turner, W. R., & Tjørve, E. (2005). Scale-dependence in species–area relationships. Ecography, 28, 721–730.Google Scholar
  104. Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., da Fonseca, G. A. B., & Portela, R. (2007). Global conservation of biodiversity and ecosystem services. BioScience, 57, 868–873.Google Scholar
  105. Uhlmann, E., Görke, C., Petersen, A., & Oberwinkler, F. (2004). Comparison of AMF species diversity in winter-rainfall areas of South Africa and summer-rainfall areas of Namibia. Mycological Progress, 3, 267–274.Google Scholar
  106. van Vuuren, D. P., Sala, O. E., & Pereira, H. M. (2006). The future of vascular plant diversity under four global scenarios. Ecology and Society, 11(2), Article 25. http://www.ecologyandsociety.org/vol11/iss2/art25/.
  107. Vohland, K., & Deckert, J. (2005). Termites (Isoptera) along a north–south transect in Namibia and South Africa. Entomologische Zeitschrift, 115, 109–115.Google Scholar
  108. Vohland, K., Uhlig, M., Marais, E., Hoffmann, A., & Zeller, U. (2005). Impact of different grazing systems on diversity, abundance and biomass of beetles (Coleoptera), a study from southern Namibia. Mitteilungen aus dem Museums für Naturkunde in Berlin, Zoologische Reihe, 81, 131–143.Google Scholar
  109. Vollan, B. (2009). Co-operation for common pool resources: An experimental perspective. München: Hut.Google Scholar
  110. Vollan, B., Prediger, S., & Frölich, M. (2009). The influence of collective property rights on grazing management in a semi-arid region. http://www.escholarship.org/uc/item/8j9521t1. Accessed 10 April 2010.
  111. Walter, H., & Breckle, S.-W. (1983). Ökologie der Erde—Band 1: Ökologische Grundlagen in globaler Sicht. Stuttgart: Fischer.Google Scholar
  112. Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.Google Scholar
  113. Wildi, O. (1986). Analyse vegetationskundlicher Daten—Theorie und Einsatz statistischer Methoden. Veröffentlichung des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel in Zürich, 90. Zurich: Geobotanisches Institut, ETH.Google Scholar
  114. Wittig, R., König, K., Schmidt, M., & Szarzynski, J. (2007). A study of climate change and anthropogenic impacts in West Africa. Environmental Science and Pollution Research, 14, 182–189.Google Scholar
  115. World Resources Institute (Ed.) (2005). Ecosystem and human well-being: Biodiversity synthesis—A report of the Millennium Ecosystem Assessment. Washington, DC: World Resources Institute.Google Scholar
  116. Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446–453.Google Scholar
  117. Zedda, L., & Rambold, G. (2004). Diversity change of soil-growing lichens along a climate gradient in Southern Africa. Bibliotheca Lichenologica, 88, 701–714.Google Scholar
  118. Zedda, L., Köhler, T., & Rambold, G. (2008). The project BIOTA Southern Africa lichens: Methods. http://biota-africa.uni-bayreuth.de/wiki/BIOTA_Lichens_meth. Accessed 24 March 2010.
  119. Zedda, L., Gröngröft, A., Schultz, M., Petersen, A., Mills, A., & Rambold, G. (2011). Distribution patterns of soil lichens across different biomes of southern Africa. Journal of Arid Environments, 75, 215–220.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Norbert Jürgens
    • 1
  • Ute Schmiedel
    • 1
  • Daniela H. Haarmeyer
    • 1
    • 4
  • Jürgen Dengler
    • 1
  • Manfred Finckh
    • 1
  • Dethardt Goetze
    • 2
  • Alexander Gröngröft
    • 3
  • Karen Hahn
    • 4
  • Annick Koulibaly
    • 5
  • Jona Luther-Mosebach
    • 1
    • 3
  • Gerhard Muche
    • 1
  • Jens Oldeland
    • 1
  • Andreas Petersen
    • 3
    • 6
  • Stefan Porembski
    • 2
  • Michael C. Rutherford
    • 7
    • 8
  • Marco Schmidt
    • 9
  • Brice Sinsin
    • 10
  • Ben J. Strohbach
    • 11
  • Adjima Thiombiano
    • 12
  • Rüdiger Wittig
    • 4
  • Georg Zizka
    • 9
  1. 1.Biodiversity, Evolution and Ecology of Plants, Biocentre Klein Flottbek and Botanical GardenUniversity of HamburgHamburgGermany
  2. 2.Department of Botany, Institute of Biological SciencesUniversity of RostockRostockGermany
  3. 3.Institute of Soil ScienceUniversity of HamburgHamburgGermany
  4. 4.Chair of Ecology and Geobotany, Institute of Ecology, Evolution and DiversityJ. W. Goethe-UniversityFrankfurt am MainGermany
  5. 5.Laboratoire de Production et Amélioration Végétales, U.F.R. Sciences de la NatureUniversité d’Abobo-AdjaméDaloa 02Côte d’Ivoire
  6. 6.Department of Research Management and FundingUniversity of HamburgHamburgGermany
  7. 7.Applied Biodiversity Research DivisionSouth African National Biodiversity Institute (SANBI)Cape TownSouth Africa
  8. 8.Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  9. 9.Research Institute Senckenberg and J.W. Goethe-UniversityFrankfurt am MainGermany
  10. 10.Laboratoire d’Ecologie Appliquée, Faculté des Sciences AgronomiquesUniversité d’Abomey-CalaviCotonouBénin
  11. 11.National Botanical Research Institute (NBRI)WindhoekNamibia
  12. 12.Laboratoire de Biologie et d’Écologie Végétales, Unité de Formation et Recherche en Sciences de la Vie et de la TerreUniversité de OuagadougouOuagadougou 03Burkina Faso

Personalised recommendations