Environmental Monitoring and Assessment

, Volume 184, Issue 1, pp 313–320

Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits

  • Mehmet Musa Özcan
  • Mustafa Harmankaya
  • Sait Gezgin
Article

Abstract

The rate of heavy metal pollution in some minor fruit samples growing at roadsides in Turkey were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The mineral contents of samples were found to be different depending on the several parts Citrus fruits. The highest minor and heavy metal levels for Citrus fruits were determined between 17.24 and 45.30 mg/kg boron, 2.08 and 15.05 mg/kg copper, 1.01 and 16.00 mg/kg iron and 2.35 and 9.87 mg/kg zinc. Boron content ranged from 16.54 mg/kg (Deveci pear inner pulp) to 89.89 mg/kg (Arjantin apple outer skin). The level of Fe ranged from 1.49 mg/kg (quince pulp) to 25.05 mg/kg (Ankara pear pulp). Cu content of fruits ranged between 2.52 mg/kg (Fuji apple skin) and 25.93 mg/kg quince skin). Zn content was found between 0.46 mg/kg (Golden apple pulp) and 14.34 mg/kg (quince skin). P contents ranged from 651 mg/kg (Golden apple pulp) to 1269 mg/kg (quince skin). Na was found between 500 mg/kg (Fuji apple skin) and 907 mg/kg (Arjantin apple skin).

Keywords

Fruits Apple Pear Quince Heavy metals ICP-AES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akesson, A., Julin, B., & Wolk, A. (2008). Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: A population-based prospective cohort study. Cancer Research, 68, 6435–6441.CrossRefGoogle Scholar
  2. Angelova, V., & Ivanov, K. (2009). Bio-accumulation and distribution of heavy metals in black mustard (Brassica nigra Koch). Environ Monitoring Assess, 153, 449–459.CrossRefGoogle Scholar
  3. Antonious, G. F., & Kochhar, T. S. (2009). Mobility of heavy metals from soil into hot pepper fruits: A field study. Bull Environmental Contamination Toxicology, 82, 59–63.CrossRefGoogle Scholar
  4. Bosque, M. A., Schuhmacher, M., Domingo, J. L., & Llobet, J. M. (1990). Concentrations of lead and cadmium in edible vegetables from Tarragona Province. Spain Science Total Environment, 95, 61–67.CrossRefGoogle Scholar
  5. Ellen, G., van Loon, J. W., & Tolsma, K. (1990). Heavy metals in vegetables grown in the Netherlands and in domestic and imported fruits. Zeit Lebensmittel Unter Forschung A, 190, 34–39.CrossRefGoogle Scholar
  6. Ergon, P. K., Tepe, A. G., Elm, M. S., & Tadic, S. D. (1999). Hepatichyperplasia and cancer in rats: Alterations in copper metabolism. Carcinogenesis, 20, 1091–1096.CrossRefGoogle Scholar
  7. Feig, D. I., Reid, T. M., & Loeb, L. A. (1994). Reactive oxygen species in tumorigenesis. Cancer Research, 54, 1890–1894.Google Scholar
  8. Golia, E. E., Dimirkou, A., & Mitsios, I. K. (2008). Influence of some soil parameters on heavy metals accumulation by vegetables grown in agricultural soils of different soil orders. Bull Environmental Contamination Toxicology, 81, 80–84.CrossRefGoogle Scholar
  9. Gupta, S., Satpati, S., Nayek, S., & Garai, D. (2009). Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental monitoring and assessment, 165, 169–177.CrossRefGoogle Scholar
  10. Hu, X., & Ding, Z. (2009). Lead/cadmium contamination and lead isotopic rations in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China. Bull Environmental Contamination Toxicology, 82, 80–84.CrossRefGoogle Scholar
  11. Jansson, G. (2002). Cadmium in Arable Crops. Doctoral Thesis. Swedish University of Agricultural Sciences. Uppsala.Google Scholar
  12. Maleki, A., & Zarasvand, M. A. (2008). Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. Southeast Asian Journal of Tropical Medicine Public Health, 39, 335–340.Google Scholar
  13. Moore, J. N., & Luoma, S. N. (1990). Hazardous waste from large scale metal extraction. A case study. Environmental Science Technology, 24, 1278–1285.CrossRefGoogle Scholar
  14. Mor, F., & Ceylan, S. (2008). Cadmium and lead contamination in vegetables collected from industrial, traffic and rural areas in Bursa Province, Turkey. Food Additive Contamination Part A, 25, 611–615.CrossRefGoogle Scholar
  15. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2008). Assesment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 98, 43–56.CrossRefGoogle Scholar
  16. O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99, 6709–6724.CrossRefGoogle Scholar
  17. Perello, G., Marti-Cid, R., Llobet, J. M., & Domingo, J. L. (2008). Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. Journal of Agriculture Food Chemistry, 56, 11262–11269.CrossRefGoogle Scholar
  18. Püskülcü, H., & İkiz, F. (1989). Introduction to Statistic (p. 333). Bornova, İzmir, Turkey: Bilgehan Press (in Turkish).Google Scholar
  19. Sachan, S., Singh, S. K., & Srivastava, P. C. (2007). Buildup of heavy metals in soil–water–plant continuum as influenced by irrigation with contaminated effluent. Journal of Environmental Science Engineering, 49, 293–296.Google Scholar
  20. Samsqe-Petersen, Larsen, E. H., Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environmental Science Technology, 36, 3057–3063.CrossRefGoogle Scholar
  21. Sharma, R. K., Agrawal, M., & Marshall, F. M. (2009). Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chemical Toxicology, 47, 583–591.CrossRefGoogle Scholar
  22. Skujins, S. (1998). Handbook for ICP-AES (Varian-Vista). A short guide to vista series ICP-AES Operation (p. 29). Varian Int. AGşZug. Version 1.0., Switzerland.Google Scholar
  23. Szymczak, J., Ilow, R., & Regulska-Ilow, B. (1993). Levels of copper and zinc in vegetables. fruit and cereal from areas differing in the degree of industrial pollution and from greenhouses. Roczniki PanÂstwowego Zakø adu Higieny, 44, 347–359.Google Scholar
  24. Thomas, L. D., Hodgson, S., Nieuwenhuijsen, M., & Jarup, L. (2009). Early kidney damage in a population exposed to cadmium and other heavy metals. Environmental Health Perspective, 117, 181–184.Google Scholar
  25. Trichopoulos, D. (1997). Epidemiology of cancer. In Cancer, Principles and Practice of Oncology (pp. 231–258). Lippincott, Philadelphia.Google Scholar
  26. Türkdoǧan, M. K., Kilicel, F., Kara, K., Tuncer, I., & Uygan, I. (2002). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental toxicology and pharmacology, 13, 175–179.CrossRefGoogle Scholar
  27. Xie, M., Bohlen, V. A., Klockenkamper, R., Jian, X., & Gunter, K. (1998). Multi element analysis of Chinese tea (Camellia sinensis) by total-reflection X-ray fluorescence. Zeit Lebensmittel Unters Forschung A, 207, 31–38.CrossRefGoogle Scholar
  28. Weigert, P. (1991). Metal loads of food of vegetable origin including mushrooms. In E. Merian (Ed.), Metals and their compounds in the environment: Occurrence, analysis and biological relevance (pp. 458–468). Weinheim: VCH.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mehmet Musa Özcan
    • 1
  • Mustafa Harmankaya
    • 2
  • Sait Gezgin
    • 2
  1. 1.Department of Food Engineering, Faculty of AgricultureUniversity of SelçukKonyaTurkey
  2. 2.Department of Soil Science, Faculty of AgricultureUniversity of SelçukKonyaTurkey

Personalised recommendations