Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 197–204 | Cite as

Genetic damage induced by lead chloride in different tissues of fresh water climbing perch Anabas testudineus (Bloch)

  • Md. Kawser AhmedEmail author
  • Elora Parvin
  • Mohammad Arif
  • Md. Monirul Islam
  • Mosammat Salma Akter
  • Mohammad Shahneawz Khan


The present investigation was undertaken to study the induction of DNA damage by lead chloride (PbCl2) in freshwater climbing perch Anabas testudineus using alkaline single cell gel electrophoresis (comet assay). Based on the LC50 values of lead chloride of A. testudineus three different concentrations viz., 0.1, 1.0 and 2.0 mg/L were selected to expose fish. The DNA damage was observed in the gill, kidney and liver tissue as the percentage of DNA in comet tails and comet heads in the tissue of the exposed fish. DNA damage at different concentrations showed sensitivity to particular tissue. The liver tissue exhibited significantly (p < 0.01) higher DNA damage, followed by kidney and gill. However, the DNA damage was found to be dose dependent; at 2 mg/L of PbCl2 the tail and head DNA of liver tissue were 57.84% and 39.49%, in kidney tissue the values were 52.36% and 44.97% whereas in gill tissue the values were 48.86% and 48.96% respectively. The current study explored the utility of the comet assay for in vivo laboratory studies using A. testudineus species for screening the genotoxic potential of lead chloride.


Comet assay DNA damage Freshwater fish Aquatic pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, M. K., Mehedi, M. Y., Huque, M. R., & Ahmed, F. (2002). Heavy metal concentration in water and sediment of sundarbans mangrove forest, Bangladesh. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 4(2), 171–179.Google Scholar
  2. Ahmed, M. K., Mehedi, M. Y., Haque, M. R., & Ghosh, R. K. (2003). Concentration of heavy metals in two upstream rivers sediment of the sundarban mangrove forest. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 5(1), 41–47.Google Scholar
  3. Ahmed, M. K., Akhand, A. A., Hasan, M., Islam, M. M., & Hasan, M. A. (2008). Toxicity of arsenic (sodium arsenite) to fresh water spotted snakehead (Channa punctatus Bloch and Schneiber, 1801) on cellular death and DNA content. American-Eurasian Journal Agricultural and Environmental Sciences, 4(1), 18–22.Google Scholar
  4. Ahmed, M. K., Biswas, D. R., Islam, M. M., Akter, M. S., Kazi, A. I., & Sultana, G. N. N. (2009). Heavy metal concentrations in different organs of fishes of the river Meghna, Bangladesh. Terrestrial and Aquatic Environmental Toxicology, 3(1), 28–32.Google Scholar
  5. Ahmed, M. K., Bhowmik, A. C., Rahman, S., Haque, M. R., & Hasan, M. M. (2010a). Heavy metal concentrations in water, sediments and their bioaccumulations in fishes and oyster in Shitalakhya River. Asian Journal of Water, Environment and Pollution, 7(1), 77–90.Google Scholar
  6. Ahmed, M. K., Parveen, E., Arif, M., Akter, M. S., Khan, M. S., & Islam, M. M. (2010b). Measurements of genotoxic potential of cadmium in different tissues of fresh water climbing perch Anabas testudineus (Bloch), using the comet assay. Environmental Toxicology and Phermacology, 30, 80–84.CrossRefGoogle Scholar
  7. Akter, M. S., Ahmed, M. K., Akhand, A. A., Ahsan, N., Islam, M. M., & Khan, M. S. (2009). Arsenic and mercury induce death of Anabas testudineus (Bloch) involving fragmentation of chromosomal DNA. Terrestrial and Aquatic Environmental Toxicology, 3(1), 42–47.Google Scholar
  8. Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., & Kushwaha, B. (2008). Geontoxicity assessment of acute expousure of chlorpyrifos to freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Chemosphere, 71, 1823–1831. doi: 10.1016/j.chemosphere.2008.02.007.CrossRefGoogle Scholar
  9. Anderson, D., Yu, T. W., Philips, B. J., & Schmerzer, P. (1994). The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the comet assay. Mutation Research, 307, 261–271.CrossRefGoogle Scholar
  10. APHA, A.W.W.A., W.P.C.F. (1998). Standard methods for examination of water and wastewater (20th ed). New York: American Public Health Association.Google Scholar
  11. ATSDR/EPA Priority List for (2001). Top 20 hazardous substances, agency for toxic substances and disease registry, US Department of Health and Human Services, 2001.Google Scholar
  12. Bennett, R. O., & Dooley, J. K. (1982). Copper uptake by two sympatric species of killi fish Fundulus heteroclitus (L.) and F. majalis (Walbaum). Journal of Fish Biology, 21, 381–398.CrossRefGoogle Scholar
  13. Bonacker, D., Stoiber, T., Bohm, K. J., Prots, I., Wang, M., Unger, E., et al. (2005). Genotoxicity of inorganic lead salts and disturbance of microtubule function. Environmental and Molecular Mutagenesis, 45(4), 346–353.CrossRefGoogle Scholar
  14. Cavas, T. (2008). In vivo genotoxicity of mercury chloride and lead acetate: Micronucleus test on acridine orange statined fish cells. Food and Chemical Toxicology, 46, 352–358.CrossRefGoogle Scholar
  15. Cestari, M. M., Lemos, P. M. M., Ribeiro, C. A. D., Costa, J., Pelletier, E., Ferraro, M. V. M., et al. (2004). Genetic damage induced by trophic doses of lead in the neotropical fish Hoplias malabaricus (Characiformes, Erythrinidae) as revealed by the comet assay and chromosomal aberrations. Genetics and Molecular Biology, 27, 270–274.CrossRefGoogle Scholar
  16. Fairbairn, D. W., Olive, P. L., & O’Neill, K. L. (1995). The comet assay: A comprehensive review. Mutation Research, 399, 37–59.Google Scholar
  17. Ferraro, M. V. M., Fenocchio, A. S., Mantovani, M. S., Ribeiro, C. D., & Cestari, M. M. (2004). Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genetics and Molecular Biology, 27, 103–107.CrossRefGoogle Scholar
  18. Frascasso, M. R., Perbellini, L., Solda, S., Talamini, G., & Franceschetti, P. (2002). Lead induced DNA strand breaks in lymphocytes of exposed workers: Role of reactive oxygen species and protein kinase. C Mutation Research, 515, 159–169.Google Scholar
  19. Frenzilli, G., Nigro, M., Lyons, B. P. (2009). The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutatation Research, 681, 80–92.CrossRefGoogle Scholar
  20. Godwin, A. H. (2001). The biological chemistry of lead. Current Opinion in Chemical Biology, 5, 223–227.CrossRefGoogle Scholar
  21. Goldwater, L. J. (1971). Mercury in the environment. Scientific American, 224(5), 15–21.CrossRefGoogle Scholar
  22. Gonzalez, H. O., Roling, J. A., Baldwin, W. S., & Bain, L. J. (2006). Physiological changes and differential gene expression in mummichogs (Fundulus heteroclitus) exposed to arsenic. Aquatic Toxicology, 77, 43–52.CrossRefGoogle Scholar
  23. Haque, M. R., Ahmed, M. K., Mannaf, M. A., & Islam, M. M. (2006). Seasonal variation of heavy metals concentrations in Gudusia chapra inhabiting the Sundarban mangrove forest. The Journal NOAMI, 23(1), 1–21.Google Scholar
  24. Iliopoulou-Georgudaki, J., & Kotsanis, N. (2001). Toxic effects of cadmium and mercury in rainbow trout (Oncorhynchus mykiss): A short-term bioassay. Bulletin of Environmental Contamination and Toxicology, 66, 77–85.CrossRefGoogle Scholar
  25. Jennette, K. W. (1981). The role of metals in carcinogenesis: Biochemistry and metabolism. Environmental Health Perspectives, 40, 231–233.CrossRefGoogle Scholar
  26. Johnson, F. M. (1998). The genetic effects of environmental lead. Mutation Research, 410, 123–140.CrossRefGoogle Scholar
  27. Kilemade, M. F., Hartl, M. G. J., Sheehan, D., Mothersill, C., Van Pelt, F. N. A. M., O’Halloran, J., et al. (2004). Genotoxicity of field collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile trubot (Scophthalmus maximus L.) as measured by the comet assay. Environmental and Molecular Mutation, 44, 56–64.CrossRefGoogle Scholar
  28. Klaude, M., Eriksson, S., Nygren, J., & Ahnstrom, G. (1996). The comet assay: Mechanisms and technical considerations. Mutation Research, 363, 89–96.Google Scholar
  29. Konca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., et al. (2003). A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 53, 15–20.CrossRefGoogle Scholar
  30. Lee, R. F., & Steinert, S. (2003). Use of the single cell gel electrophoresis/ comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research, 544, 43–64.CrossRefGoogle Scholar
  31. Lodhi, H. S., Khan, M. A., Verma, R. S., & Sharma, U. D. (2006). Acute toxicity of copper sulphate to fresh water prawns. Journal of Environmental Biology, 27(3), 585–588.Google Scholar
  32. Masuda, S., Deguchi, Y., Masuda, Y., Watanabe, T., Nukaya, H., Terao, Y., et al. (2004). Genotoxicity micronucleus test and the comet assay of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro- 2H-benzotriazole (PBTA-6) and 4-amino-3,30-dichloro-5,40 -dinitro-biphenyl (ADDB) in goldfish (Carassius auratus) using the micronu- cleus test and the comet assay. Mutation Research, 560, 33–40.Google Scholar
  33. Medina, M., Correa, J. C., & Barata, C. (2007). Micro-evolution due to pollution: Possible consequences for ecosystem responses to toxic stress. Chemosphere, 67, 2105–2114.CrossRefGoogle Scholar
  34. Mitchelmore, C. L., & Chipman, J. K. (1998). DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Research, 399, 135–147.CrossRefGoogle Scholar
  35. Osman, A. G. M., Mekkawy, I. A., Verreth, J., Wuertz, S., Kloas, W., & Kirschbaum, F. (2008). Monitoring of DNA breakage in embryounic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay. Environmental Toxicology, 23, 679–687.CrossRefGoogle Scholar
  36. Parvin, E., Ahmed, M. K., Islam, M. M., Akter, M. S., & Kabir, M. A. (2010). Preliminary acute toxicity bioassays of lead and cadmium on fresh water climbing perch, Anabas testudineus (Bloch). Terrestrial and Aquatic Environmental Toxicology, 5(1), 55–58.Google Scholar
  37. Rajaguru, P., Suba, S., Palanivel, M., & Kalaiselvi, K. (2003). Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environmetal and Molecular Mutagenesis, 4, 85–91.CrossRefGoogle Scholar
  38. Russo, C., Rocco, L., Morescalchi, M. A., & Stingo, V. (2004). Assessment of environmental stress by the micronucleus test and the comet assay on the genome of teleost populations from two natural environments. Ecotoxicology and Environmental Safety, 57(2), 168–174.CrossRefGoogle Scholar
  39. Schnurstein, A., & Braunbeck, T. (2001). Tail moment versus thai length-Application of an in vitro version of the comet assay in biomonitoring for genotoxicity in native surface waters using primary hepatocytes and gill cells from zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 49, 187–196.CrossRefGoogle Scholar
  40. Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals An overview. Journal of Environmental Biology, 26(2), 301–313.Google Scholar
  41. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.CrossRefGoogle Scholar
  42. Snow, E. T. (1992). Metal carcinogenesis-Mechanistic implications. Pharmacology & Therapeutic, 53, 31–65.CrossRefGoogle Scholar
  43. Tice, R. R. (1995). The single cell gel/comet assay: A microgel electrophoretic technique for the detection of DNA damage and repair in individual cells. In D. H. Phillips & S. Venitt (Eds.), Environmental mutagenesis (pp. 315–339). Oxford: Bios.Google Scholar
  44. Valverde, M., Trejo, C., & Rojas, E. (2001). Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis, 16, 265–270.CrossRefGoogle Scholar
  45. Vanzella, T. P., Colus Martinez, C. B., & MS, I. (2007). Genotoxic and mutagenic effects of diesel oil water soluble fraction on a neotropical fish species. Mutation Research, 631, 36–43.Google Scholar
  46. Yasuhara, S., Zhu, Y., Matsui, T., Tipirneni, N., Yasuhara, Y., Kaneki, M., et al. (2003). Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. Journal of Histochemistry and Cytochemistry, 51, 873–885.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Md. Kawser Ahmed
    • 1
    Email author
  • Elora Parvin
    • 1
  • Mohammad Arif
    • 2
  • Md. Monirul Islam
    • 1
  • Mosammat Salma Akter
    • 1
  • Mohammad Shahneawz Khan
    • 1
  1. 1.Department of FisheriesUniversity of DhakaDhakaBangladesh
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh

Personalised recommendations