Environmental Monitoring and Assessment

, Volume 182, Issue 1–4, pp 71–84

Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes

  • Marcin Frankowski
  • Anetta Zioła-Frankowska
  • Iwona Kurzyca
  • Karel Novotný
  • Tomas Vaculovič
  • Viktor Kanický
  • Marcin Siepak
  • Jerzy Siepak
Open Access
Article

Abstract

The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 \(\upmu \)g L − 1. The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

Keywords

Aluminium Groundwater Miocene aquifer Aluminium complexes Modelling AAS ICP 

References

  1. Bérubé, D., & Brûlé, D. G. (1999). A field aluminum speciation method to study the aluminium hazard in water. Fresenius Journal of Analytical Chemistry, 363, 566–570.CrossRefGoogle Scholar
  2. Bloom, P. R., & Erich, S. M. (1996). The quantitation of aqueous aluminium. In: G. Sposito (Ed.), The environmental chemistry of aluminium (pp. 363–419). Boca Raton: CRC.Google Scholar
  3. Boudot, J. P., Becquer, T., Merlet, D., & Rouiller, J. (1994). Aluminium toxicity in declining forests: A general overview with a seasonal assessment in a silver fir’ forest in the Vosges mountains (France). Annales des Sciences Forestières, 51, 27–51.CrossRefGoogle Scholar
  4. Cory, N., Buffam, I., Laudon, H., Björkvald, L., Mörth, C. M., Köhler, S., et al. (2009). Particulate aluminium in boreal streams: Towards a better understanding of its sources and influence on dissolved aluminium speciation. Applied Geochemistry, 24, 1677–1685.CrossRefGoogle Scholar
  5. Dąbrowski, S, Górski, J., & Przybyłek, J., (2007). The lowland sub-region of the Warta River; Regional hydrogeology of Poland. Fresh water (Vol. I, pp. 369–387). Warsaw: Polish Geological Institute, (in Polish).Google Scholar
  6. Danielsson, L. G., & Sparén, A. (1995). A mechanized system for the determination of low levels of quickly reacting aluminium in natural waters. Analytica Chimica Acta, 306, 173–181.CrossRefGoogle Scholar
  7. Driscoll, C. T., & Schecher, W. D. (1990). The chemistry of aluminum in the environment. Environmental Geochemistry and Health, 12, 28–49.CrossRefGoogle Scholar
  8. Fairman, B., Sanz-Medel, A., Jones, P., & Evans, E. H. (1998). Comparison of fluorometric and inductively coupled plasma mass spectrometry detection systems for the determination of aluminium species in waters by high-performance liquid chromatography. Analyst, 123, 699–703.CrossRefGoogle Scholar
  9. Frankowski, M., & Zioła-Frankowska, A. (2010). Speciation analysis of aluminium and aluminium fluoride complexes by HPIC-UVVIS. Talanta, 82, 1763–1769.CrossRefGoogle Scholar
  10. Frankowski, M., Zioła-Frankowska, A., & Siepak, J. (2009). Study of aluminium sulphate complexes of surface water and fractionation of aluminium from bottom sediment. Archives of Environmental Protection, 35, 55–67.Google Scholar
  11. Frankowski, M., Zioła-Frankowska, A., & Siepak, J. (2010a). Speciation of aluminium fluoride complexes and Al3 +  in soils from the vicinity of an aluminium smelter plant by hyphenated High Performance Ion Chromatography Flame Atomic Absorption Spectrometry technique. Microchemical Journal, 95, 366–372.CrossRefGoogle Scholar
  12. Frankowski, M., Zioła-Frankowska, A., & Siepak, J. (2010b). New method for speciation analysis of aluminium fluoride complexes by HPLC-FAAS hyphenated technique. Talanta, 80, 2120–2126.CrossRefGoogle Scholar
  13. Górski, J. (1989). The main hydrochemical problems of the Cainozonic aquifer located in central Wielkopolska (Great Poland). Scientific Bulletins of Stanisław Staszic Academy of Mining and Metallurgy, no.1308, Geology bulletin 45, Cracow (in Polish).Google Scholar
  14. Górski, J., & Przybyłek, J. (1996). Geological structure and ground water (pp. 23–43). The natural environment of the city of Poznań. Poznań (in Polish).Google Scholar
  15. Hills, A., Grote, M., Janßen, E., & Eichhorn (1999). Speciation of trace amounts of aluminum in percolating water of forest soil by online coupling HPLC-ICP-MS. Fresenius Journal of Analytical Chemistry, 364, 457–461.CrossRefGoogle Scholar
  16. Kabata-Pendias, A., & Pendias, H. (1999). Biogeochemistry of trace elements (pp. 192–198). Warszawa: Wydawnictwo Naukowe PWN.Google Scholar
  17. Macioszczyk, A., & Dobrzyński, D. (2002). Hydrogeochemistry of short turn-over time zone (pp. 322–324). Warszawa: Wydawnictwo Naukowe PWN (in Polish).Google Scholar
  18. Mitrović, B., Milačič, R., Pihlar B., & Simončič, P. (1998). Specification of trace amounts of aluminium in environmental samples by cation-exchange FPLC—ETAAS. Analusis, 26, 381–388.CrossRefGoogle Scholar
  19. Narin, I., Tuzen, M., & Soylak, M. (2004). Aluminum determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on amberlite XAD-1180/pyrocathechol violet chelating resins. Talanta, 63, 411–418.CrossRefGoogle Scholar
  20. Préndez, M., & Carrasco, M. A. (2003). Elemental composition of surfacewaters in the antarctic peninsula and interactions with the environment. Environmental Geochemistry and Health, 25, 347–363.CrossRefGoogle Scholar
  21. Przybyłek, J. (1986). Groundwater in the vicinity of the Poznań-Gostyń fault graben. Papers of Wrocław University of Technology. Wrocław. no. 49 (in Polish).Google Scholar
  22. Rezaee, M., Yamini, Y., Khanchi, A., Faraji, M., & Saleh, A. (2010). A simple and rapid new dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. Journal of Hazardous Materials, 178, 766–770.CrossRefGoogle Scholar
  23. Rodushkin, I., & Ruth, T. (1997). Determination of trace metals in estuarine and sea-water reference materials by high resolution inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 12, 1181–1185.CrossRefGoogle Scholar
  24. Rossiter, H. M. A., Owusu, P. A., Awuah, E., MacDonald, A. M., & Schäfer, A. I. (2010). Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment. Science of the Total Environment, 408, 2378–2386.CrossRefGoogle Scholar
  25. Salomon, S., Giamarchi, P., Le Bihan, A., Becker-Roß, H., & Heitmann, U. (2000). Improvements in the determination of nanomolar concentrations of aluminium in seawater by electrothermal atomic absorption spectrometry. Spectrochimica Acta B, 55, 1337–1350.CrossRefGoogle Scholar
  26. Ščančar, J., & Milačič, R. (2006). Aluminium speciation in environmental samples: A review. Analytical and Bioanalytical Chemistry , 386, 999–1012.CrossRefGoogle Scholar
  27. Siepak, M., Frankowski, M., Zioła, A., Kurzyca, I., & Przybyłek, J. (2006). Chemistry in sustainable development (pp. 453–460) (in Polish).Google Scholar
  28. Sjöstedt, C., Wällstedt, T., Gustafsson, J. P., & Borg, H. (2009). Speciation of aluminium, arsenic and molybdenum in excessively limed lakes. Science of the Total Environment, 407, 5119–5127.CrossRefGoogle Scholar
  29. Xia, L., Hu, B., Jiang, Z., Wu, Y., Li, L., & Chen, R. (2005). 8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks. Journal of Analytical Atomic Spectrometry, 20, 441–446.CrossRefGoogle Scholar
  30. Zioła-Frankowska, A., Frankowski, M., & Siepak, J. (2009). Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS. Talanta, 78, 623–630.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Marcin Frankowski
    • 1
  • Anetta Zioła-Frankowska
    • 1
  • Iwona Kurzyca
    • 1
  • Karel Novotný
    • 2
  • Tomas Vaculovič
    • 2
  • Viktor Kanický
    • 2
  • Marcin Siepak
    • 3
  • Jerzy Siepak
    • 1
  1. 1.Department of Water and Soil Analysis, Faculty of ChemistryAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Hydrogeology and Water Protection, Institute of GeologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations