Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 563–575 | Cite as

Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece)

  • Matina Katsiapi
  • Maria Moustaka-GouniEmail author
  • Evangelia Michaloudi
  • Konstantinos Ar. Kormas


Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July–September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm3 l − 1). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir’s water volume per day) driven by water withdrawal and occurring in pulses for a period of 15–25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both ‘good’ quality species and the tolerant to flushing ‘nuisance’ cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir’s phytoplankton indicated a potential hazard for human health according to the World Health Organization.


Drinking-water reservoir Flushing rate Cyanobacteria Ecological water quality Management WFD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbosa, F. A. R., and Padisák, J. (2002). The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verhandlungen internationale Vereinigung für theoretische und angewandte Limnologie, 28, 1385–1395.Google Scholar
  2. Bartram, J., Burch, M., Falconer, I. R., Jones, G., & Kuiper-Goodman, T. (1999). Situation assessment, planning and management. In I. Chorus, & J. Bartram (Eds.), Toxic cyanobacteria in water (pp. 179–209). London: E and FN Spon.Google Scholar
  3. Chrisostomou, A., Moustaka-Gouni, M., Sgardelis, S., & Lanaras, T. (2009). Air-dispersed phytoplankton in a Mediterranean River-Reservoir System (Aliakmon-Polyphytos, Greece). Journal of Plankton Research, 31, 877–884.CrossRefGoogle Scholar
  4. Clarke, K. R., & Warwick, R. M. (1994). Change in marine communities: An approach to statistical analysis and interpretation. Plymouth: Natural Environment Research Council, Plymouth Marine Laboratory.Google Scholar
  5. Cook, C. M., Moustaka-Gouni, M., Gkelis, S., & Lanaras, T. (2005). Greece: Cyanotoxin risk assessment, risk management and regulation. In I. Chorus (Ed.), Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries (pp. 69–75). Berlin: Federal Environmental Agency (Umweltbundesamt).Google Scholar
  6. Cook, C. M., Vardaka, E., & Lanaras, T. (2004). Toxic cyanobacteria in Greek Freshwaters, 1987–2000: Occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochimica et Hydrobiologica, 32, 107–124.CrossRefGoogle Scholar
  7. European Parliament Council (2000). Directive 2000/ 60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 1–72.Google Scholar
  8. Gaedeke, A., & Sommer, U. (1986). The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia, 71, 25–28.CrossRefGoogle Scholar
  9. Gkelis, S., Harjunpää, V., Lanaras, T., & Sivonen, K. (2005a). Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environmental Toxicology, 20, 249–256.CrossRefGoogle Scholar
  10. Gkelis, S., Moustaka-Gouni, M., Sivonen, K., & Lanaras, T. (2005b). First report of the cyanobacterium Aphanizomenon ovalisporum Forti in two Greek lakes and cyanotoxin occurrence. Journal of Plankton Research, 27, 1–6.CrossRefGoogle Scholar
  11. Hajnal, É., & Padisák, J. (2008). Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia, 599, 227–237.CrossRefGoogle Scholar
  12. Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalge. Journal of Phycology, 35, 403–424.CrossRefGoogle Scholar
  13. Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Edwin, W., Kardinaal, A., et al. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960–2970.CrossRefGoogle Scholar
  14. JRC European Commission (2009). Water Framework Directive Intercalibration technical report. Part 2: Lakes. Joint Research Centre, European Commission. a=d. Accessed 28 June 2010.
  15. Kennedy, R. H. (1999). Reservoir Design and Operation: Limnological implications and management opportunities. In J. G. Tundisi, & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 1–28). The Netherlands: Backhuys.Google Scholar
  16. Kurmayer, R., Christiansen, G., & Chorus, I. (2003). The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in lake Wannsee. Applied Environmental Microbiology, 69, 787–795.Google Scholar
  17. Lymperopoulou, D. S., Kormas, K. A., Moustaka-Gouni, M., & Karagouni, A. D. (2010). Diversity of cyanobacterial phylotypes in a Mediterranean drinking water reservoir (Marathonas, Greece). Environmental Monitoring Assessment. doi: 10.1007/s10661-010-1378-7.Google Scholar
  18. Moustaka, M. (1988). Seasonal variations, annual periodicity and spatial distribution of phytoplankton in Lake Volvi. Doctoral dissertation. Aristotle University of Thessaloniki, Greece.Google Scholar
  19. Moustaka-Gouni, M. (1993). Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia, 249, 33–42.CrossRefGoogle Scholar
  20. Moustaka-Gouni, M., Albanakis, K., Mitrakas, M., & Psilovikos, A. (2000). Planktic autotrophs and environmental conditions in the newly-formed hydroelectric Thesaurus reservoir, Greece. Archiv für Hydrobiologie, 149, 507–526.Google Scholar
  21. Moustaka-Gouni, M., & Nikolaidis, G. (1992). Phytoplankton and physical–chemical features of Tavropos Reservoir, Greece. Hydrobiologia, 228, 141–149.CrossRefGoogle Scholar
  22. Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K. A., Tryfon, E., Mihalatou, H., et al. (2006). Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms. Limnology and Oceanography, 51, 715–727.CrossRefGoogle Scholar
  23. Moustaka-Gouni, M., Vardaka, E., & Tryfon, E. (2007). Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia, 575, 129–140.CrossRefGoogle Scholar
  24. Naselli-Flores, L. (1999). Limnological aspects of Sicilian reservoirs: A comparative, ecosystem approach. In J. G. Tundisi, & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 283–311). The Netherlands: Backhuys.Google Scholar
  25. Naselli-Flores, L. (2000). Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia, 424, 1–11.CrossRefGoogle Scholar
  26. Naselli-Flores, L., & Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia, 548, 85–99.CrossRefGoogle Scholar
  27. Padisák, J., Borics, G., Grigorszky, I., & Soróczki-Pintér, É. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia, 553, 1–14.CrossRefGoogle Scholar
  28. Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621, 1–19.CrossRefGoogle Scholar
  29. Padisák, J., Köhler, J., & Hoeg, S. (1999). The effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In J. G. Tundisi, & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 411–424). The Netherlands: Backhuys.Google Scholar
  30. Padisák, J., & Reynolds, C. S. (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia, 384, 41–53.CrossRefGoogle Scholar
  31. Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.CrossRefGoogle Scholar
  33. Reynolds, C. S., & Jaworski, G. H. M. (1978). Enumeration of natural Microcystis populations. European Journal of Phycology, 13, 269–277.CrossRefGoogle Scholar
  34. Reynolds, C. S., Padisák, J., & Sommer, U. (1993). Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia, 249, 183–188.CrossRefGoogle Scholar
  35. Schembri, M. A., Neilan, B. A., & Saint, C. P. (2001). Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environmental Toxicology, 16, 413–421.CrossRefGoogle Scholar
  36. Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus, & J. Bartram (Eds.), Toxic cyanobacteria in water (pp. 41–110). London: E and FN Spon.Google Scholar
  37. Souza, M. B. G., Barros, G. F. A., Barbosa, F., Hajnal, É., & Padisák, J. (2008). Role of atelomixis in replacement of phytoplankton assemblages in Dom Helvécio Lake, South-East Brazil. Hydrobiologia, 607, 211–224.CrossRefGoogle Scholar
  38. Straškraba, M., & Tundisi, J. G. (1999). Reservoir ecosystem functioning: Theory and application. In J. G. Tundisi, & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 565–583). The Netherlands: Backhuys.Google Scholar
  39. Tundisi, J. G., Matsumura-Tundisi, T., & Rocha, O. (1999). Theoretical basis for reservoir management. In J. G. Tundisi, & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 505–528). The Netherlands: Backhuys.Google Scholar
  40. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitteilungen Internationale Vereinigung Theorie Angewandte Limnologie, 9, 1–38.Google Scholar
  41. Vardaka, E., Moustaka-Gouni, M., Cook, C. M., & Lanaras, T. (2005). Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology, 17, 391–401.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Matina Katsiapi
    • 1
  • Maria Moustaka-Gouni
    • 1
    Email author
  • Evangelia Michaloudi
    • 2
  • Konstantinos Ar. Kormas
    • 3
  1. 1.Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Zoology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of Ichthyology and Aquatic Environment, School of Agricultural SciencesUniversity of ThessalyNea Ionia, VolosGreece

Personalised recommendations