Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 347–361 | Cite as

Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil

  • Mariana Coutinho Hennemann
  • Mauricio Mello Petrucio
Article

Abstract

Coastal lagoons are ecologically and economically important environments but a relative low number of studies were carried out in subtropical and permanently closed coastal lagoons. The present study aimed at assessing the temporal and spatial dynamic of trophic relevant water quality parameters in the small, deep and freshwater Peri coastal lagoon, South Brazil. During the 19 sampled months (March/2008–September/2009) spatial homogeneity (horizontal and vertical) was registered in all seasons for all variables, a condition related to the strong wind influence and low human occupation in the lagoon watershed. Seasonal variations of the water quality could be observed and they can be explained mainly by variation on temperature, wind forces and direction and rainfall, characteristic from the subtropical weather. Comparing this study with two others conducted in Peri lagoon in 1996 and 1998, no critical differences that evidence alteration in the water quality were found, but climate differences may have influenced in some small variations observed. The use of four trophic state indices indicated that indices designed for temperate lakes are inappropriate for the subtropical Peri lagoon. The lagoon was classified as oligotrophic for nutrients concentrations and meso-eutrophic for transparency and chlorophyll-a, which can be explained by the high densities and monodominance of the cyanobacterium Cylindrospermopsis raciborskii and the high recycling rates observed in warmer water bodies, when compared to the temperate ones.

Keywords

Trophic state Nutrients Subtropical lake Cyanobacteria Florianópolis Environmental protected area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, F., Bibi, M. H., Seto, K., Ishiga, H., Fukushima, T., & Roser, B. P. (2010). Abundances, distribution, and sources of trace metals in Nakaumi–Honjo coastal lagoon sediments, Japan. Environmental Monitoring and Assessment, 167(1–4), 473–491.CrossRefGoogle Scholar
  2. Badylak, S., & Phlips, J. (2004). Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research, 26(10), 1229–1247.CrossRefGoogle Scholar
  3. Branco, C. W. C., Attayde, J. L., & Kozlowsky-Suzuki, B. (1998). Zooplankton community of a coastal lagoon subjected to anthropogenic influences (Lagoa Imboacica, Macaé, R.J., Brazil). Verhandlungen der Internationalen Vereinigung fur Limnologie, 26, 1426–1429.Google Scholar
  4. Branco, C. W. C., Esteves, F. A., & Kozlowsky-Suzuki, B. (2000). The zooplankton ona other limnological features of a humic coastal lagoon (Lagoa Comprida, Macaé, R.J.) in Brazil. Hydrobiologia, 437, 71–81.CrossRefGoogle Scholar
  5. Briand, J. F., Robillot, C., Quiblier-Lloberas, C., Humbert, J. F., Coutè, A., & Bernard, C. (2002). Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Research, 36, 3183–3192.CrossRefGoogle Scholar
  6. Briand, J. F., Leboulanger, C., Humbert, J. F., Bernard, C., & Dufour, P. (2004). Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming? Journal of Phycology, 40, 231–238.CrossRefGoogle Scholar
  7. Cardoso, L. S., & Marques, D. M. (2003). Rate of change of the phytoplankton community in Itapeva Lake (North Coast of Rio Grande do Sul, Brazil), based on the wind driven hydrodynamic regime. Hydrobiologia, 497, 1–12.CrossRefGoogle Scholar
  8. Cardoso, L. S., Silveira, A. L. L., & Marques, D. M. L. M. (2003). A ação do vento como gestor da hidrodinâmica na lagoa Itapeva (litoral norte do Rio Grande Sul—Brasil). Revista Brasileira de Recursos Hídricos, 8(3), 5–15. (English abstract).Google Scholar
  9. Carlson, R. E. (1977). A trophis state index for lakes. Limnology & Oceanography, 22(2), 361–369.CrossRefGoogle Scholar
  10. Chagas, G. G., & Suzuki, M. S. (2005). Seasonal hydrochemical variation in a tropical coastal lagoon (Açu Lagoon, Brazil). Brazilian Journal of Biology, 65(4), 597–607.CrossRefGoogle Scholar
  11. Coelho, S., Gamito, S., & Pérez-Ruzafa, A. (2007). Trophic state of Foz de Almargem coastal lagoon (Algarve, South Portugal) based on water quality and the phytoplankton community. Estuarine, Coastal and Shelf Science, 71, 218–231.CrossRefGoogle Scholar
  12. Dodds, W. K. (2002). Freshwater ecology: concepts and environmental applications. London: Academic.Google Scholar
  13. Esteves, F. A. (1988). Considerações sobre a aplicação da tipologia de lagos temperados a lagos tropicais. Acta Limnologica Brasiliensia, 2, 3–28. (English abstract).Google Scholar
  14. Esteves, F. A. (1998). Lagoas costeiras: origem, funcionamento e possibilidades de manejo. In: F. A. Esteves (Ed.), Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do Município de Macaé (RJ) (pp. 63–87). Rio de Janeiro: NUPEM/UFRJ.Google Scholar
  15. Esteves, F. A., Ishii, I. H., & Camargo, A. F. M. (1984). Pesquisas limnológicas em 14 lagoas do litoral do Estado do Rio de Janeiro. In: L. D. Lacerda, D. S. D. Araújo, R. Cerqueira, & S. Turc (Eds.), Restingas: origem, estrutura e processos (pp. 443–454). Niterói: CEUFF.Google Scholar
  16. Esteves, F. A., Caliman, A., Santangelo, J. M., Guariento, R. D., Farjalla, V. F., & Bozelli, R. L. (2008). Neotropical coastal lagoons: na appraisal of their biodiversity, functionings, threats and conservation management. Brazilian Journal of Biology, 68(4), 967–981.CrossRefGoogle Scholar
  17. Fia, R., Matos, A. T., Coradi, P. C., & Pereira-Ramirez, O. (2009). Estado trófico da água na bacia hidrográfica da Lagoa Mirim, RS, Brasil. Ambi-Agua—Taubaté, 4(1), 132–141. (English abstract).CrossRefGoogle Scholar
  18. Figueredo, C. C., & Giani, A. (2009). Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica, 39(4), 264–272.Google Scholar
  19. Fonseca, O. J. M. (1991). Aspectos limnológicos da lagoa Emboaba, planície costeira setentrional do Rio Grande do Sul: morfometria, hidroquímica e degradação de Scirpus californicus (C.A. Meyer) Steud. São Carlos: Universidade Federal de São Carlos. (Ph.D. Thesis).Google Scholar
  20. Gantidis, N., Pervolarakis, M., & Fytianos, K. (2007). Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environmental Monitoring and Assessment, 125, 175–181.CrossRefGoogle Scholar
  21. Gikas, G. D., Yiannakopoulou, T., & Tsihrintzis, V. A. (2006). Water quality trends in a coastal lagoon impacted by non-point source pollution after implementation of protective measures. Hydrobiologia, 563, 385–406.CrossRefGoogle Scholar
  22. Gikas, G. D., Tsihrintzis, V. A., Akratos, C. S., & Haralambidis, G. (2009). Water quality trends in Polyphytos reservoir, Aliakmon River, Greece. Environmental Monitoring and Assessment, 149, 163–181.CrossRefGoogle Scholar
  23. Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of freshwater. Oxford: Blackwell.Google Scholar
  24. González, F. U. T., Herrera-Silveira, J. A., & Aguirre-Macedo, M. L. (2008). Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuarine, Coastal and Shelf Science, 76, 418–430.CrossRefGoogle Scholar
  25. Grellmann, C. (2006). Aspectos da morfologia e ecologia de Cylindrospermopsis raciborskii (Woloszinska) Seenayya et Subba Raju e produção de cianotoxinas na Lagoa do Peri, Florianópolis, SC, Brasil. Florianópolis: Universidade Federal de Santa Catarina. (M.Sc. Thesis).Google Scholar
  26. Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology & Oceanography, 45(6), 1213–1223.CrossRefGoogle Scholar
  27. Huszar, V. L. M., & Silva, L. H. S. (1992). Comunidades fitoplantônicas de quatro lagoas costeiras do norte do estado do Rio de Janeiro, Brasil. Acta Limnologica Brasilensia, 4, 291–314. (English abstract).Google Scholar
  28. Isvánovics, V., Shafik, H. M., Présing, M., & Juhos, S. (2000). Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology, 43, 257–275.CrossRefGoogle Scholar
  29. Kjerve, B. (1994). Coastal lagoons. In: B. Kjerfve (Ed.), Costal lagoon processes (pp. 1–8). Amsterdam:Elsevier.CrossRefGoogle Scholar
  30. Konrath, J. (1995). Flutuação temporal da taxa de fixação de carbono particulado, estrutura do fitoplâncton e fatores ambientais em uma lagoa costeira eutrófica (Lagoa Caconde), Osório, R.S. Porto Alegre: Universidade Federal do Rio Grande do Sul. (M.Sc. Thesis).Google Scholar
  31. Koroleff, F. (1976). Determination of nutrients. In: K. Grasshoff (Ed.), Methods of sea water analysis (pp. 117–181). Weinheim: Verlag. Chemie.Google Scholar
  32. Lacerda, L. D., & Gonçalves, G. O. (2001). Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil. Marine Chemistry, 76, 47–58.CrossRefGoogle Scholar
  33. Laudares-Silva, R. (1999). Aspectos limnológicos, variabilidade espacial e temporal na estrutura da comunidade fitoplanctônica da Lagoa do Peri, Santa Catarina, Brasil. São Carlos: Universidade Federal de São Carlos. (Ph.D. Thesis).Google Scholar
  34. Liou, S. M., Lo, S. L., & Wang, S. H. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment, 96, 35–52.CrossRefGoogle Scholar
  35. Lloret, J., Marín, A., & Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403–412.CrossRefGoogle Scholar
  36. Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrometric equations. Limnology & Oceanography, 12, 343–346.CrossRefGoogle Scholar
  37. Macedo, M. F., Duarte, R., Mendes, R., & Ferreira, J. G. (2001). Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon. Journal of Plankton Research, 23(7), 719–732.CrossRefGoogle Scholar
  38. Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. Freshwater Biological Association, Scientific Publication 36.Google Scholar
  39. Mercante, C. T. J., & Tucci-Moura, A. (1999). Comparação entre os índices de Carlson e de Carlson modificado aplicados a dois ambientes aquáticos subtropicais, São Paulo, SP. Acta Limnologica Brasiliensia, 11(1), 1–14. (English abstract).Google Scholar
  40. Nogueira, N. M. C., & Ramirez, R. J. J. (1998). Variação mensal da condição trófica do Lago das Garças (São Paulo, SP, Brasil). Acta Limnologica Brasilensia, 10(2), 21–34. (English abstract).Google Scholar
  41. OECD (1982). Eutrophication of waters. Monitoring, assessment and control. Paris: OECD.Google Scholar
  42. Oliveira, J. S. (2002). Análise sedimentar em zonas costeiras: subsídio ao diagnóstico ambiental da Lagoa do Peri—Ilha de Santa Catarina-SC, Brasil. Florianópolis: Universidade Federal de Santa Catarina. (M.Sc. Thesis).Google Scholar
  43. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, and expanding, highly adaptive cyanobacterium: Worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 107(4), 563–593.Google Scholar
  44. Panigrahi, S., Wikner, J., Panigrahy, R. C., Satapathy, K. K., & Acharya, B. C. (2009). Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology, 10, 73–85.CrossRefGoogle Scholar
  45. Pedrozo, C. S., & Rocha, O. (2006). Zooplankton and water quality of lakes of the Northern Coast of Rio Grande do Sul State, Brazil. Acta Limnologica Brasiensia, 17(4), 445–464.Google Scholar
  46. Pereira, A. A., van Hattum, B., Brouwer, A., van Bodegom, P. M., Rezende, C. E., & Salomons, W. (2006). Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon. Journal of Soils and Sediments, 8, 239–252.CrossRefGoogle Scholar
  47. Pereira, P., Pablo, H., Vale, C., Franco, V., & Nogueira, M. (2009). Spatial and seasonal variation of water quality in an impacted coastal lagoon (Óbidos Lagoon, Portugal). Environmental Monitoring and Assessment, 153, 281–292.CrossRefGoogle Scholar
  48. Petrucio, M. M. (1998). Caracterização das Lagoas Imboassica, Cabiúnas, Comprida e Carapebus a partir da temperatura, salinidade, condutividade, alcalinidade, O 2 dissolvido, pH, transparência e material em suspensão. In: F. A. Esteves (Ed.), Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do Município de Macaé (RJ) (pp. 109–122). Rio de Janeiro: NUPEM/UFRJ.Google Scholar
  49. Phlips, E. J., Badylak, S., & Grosskopf, T. (2002). Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuarine, Coastal and Shelf Science, 55, 385–402.CrossRefGoogle Scholar
  50. Salas, H. J., & Martino, P. (1991). A simplified phosphorus trophic state model for warm-water tropical lakes. Water Research, 25(3), 341–350.CrossRefGoogle Scholar
  51. Schäfer, A. (1988). Tipificação ecológica das lagoas costeiras do Rio Grande do Sul, Brasil. Acta Limnologica Brasiliensia, 2, 29–55. (English abstract).Google Scholar
  52. Schwarzbold, A., & Schäfer, A. (1984). Gênese e morfologia das lagoas costeiras do Rio Grande do Sul. Amazoniana, 9(1), 87–104.Google Scholar
  53. Schwarzbold, A., Machado, N. A. F., Hocevar, C. M., Krieger, E. I. F., Güntzel, C. E., Carvalho, E. N., et al.(1999). Lagoa Figueira, um caso de lagoa costeira “profunda” do litoral médio do RS: contribuição inicial à tipificação limnológica. Florianópolis: Resumos do VII Congresso Brasileiro de Limnologia.Google Scholar
  54. Silva, R. L. & Senna, P. A. C. (1997). Estudos limnológicos na lagoa do Peri (1995–1996), Florianópolis, SC. Aquitaine Ocean, 3, 265–270.Google Scholar
  55. Simonassi, J. C. (2001). Caracterização da Lagoa do Peri, através da análise de parâmetros físico-químicos e biológicos, como subsídio ao gerenciamento dos recursos hídricos da Ilha de Santa Catarina, SC, Brasil. Florianópolis: Universidade Federal de Santa Catarina. (M.Sc. Thesis).Google Scholar
  56. Spaulding, M. L. (1994). Modeling of circulation and dispersion in coastal lagoons. In: B. Kjerfve (Ed.), Coastal lagoon processes (pp. 103–132). Amsterdam: Elsevier.CrossRefGoogle Scholar
  57. Specchiulli, A., Renzi, M., Scirocco, T., Cilenti, L., Florio, M., Breber, P., et al. (2010). Comparative study based on sediment characteristics and macrobenthic communities in two Italian lagoons. Environmental Monitoring and Assessment, 160, 237–256.CrossRefGoogle Scholar
  58. Strickland, J. D. H., & Parsons, T. R. (1960). A manual of seawater analysis. Journal of the Fisheries Research Board of Canada, 167, 311.Google Scholar
  59. Toledo, A. P., Jr., Talarico, M., Chinez, S. J., & Agudo, E. G. (1983). A aplicação de modelos simplificados para a avaliação do processo de eutrofização em lagos e reservatórios tropicais. In: Anais do XII Congresso Brasileiro de Engenharia Sanitária e Ambiental, Camboriú, 1–34.Google Scholar
  60. Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and phosphorus in natural waters. Marine Chemistry, 10, 1109–1122.CrossRefGoogle Scholar
  61. Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. San Diego: Academic.Google Scholar
  62. Wiedner, C., Rücker, J., Brüggemann, R., & Nixdorf, B. (2007). Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia, 152, 473–484.CrossRefGoogle Scholar
  63. Yang, Y. H., Zhou, F., Guo, H. C., Sheng, H., Liu, H., Dao, X., et al. (2010). Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170(1–4), 407–416.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mariana Coutinho Hennemann
    • 1
  • Mauricio Mello Petrucio
    • 1
  1. 1.Laboratório de Ecologia de Águas Continentais, Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa CatarinaTrindade, FlorianópolisBrazil

Personalised recommendations