Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 255–265 | Cite as

Assessment of carcinogenic heavy metal levels in Brazilian cigarettes

  • Gustavo Freitas de Sousa Viana
  • Karina S. Garcia
  • Jose Antonio Menezes-Filho
Article

Abstract

Several studies have associated high cancer incidence with smoking habits. According to IARC, lead (Pb), cadmium (Cd), arsenic (As), nickel (Ni), and chromium (Cr) are carcinogenic to humans. These metals are present in cigarettes and their levels vary according to geographical region of tobacco cultivation, fertilizer treatment, plant variety etc. This study aims to assess these metal levels in cigarettes commercialized in Brazil. Three cigarettes of each 20 different brands were individually weighed, the tobacco filling removed, and homogenized. After desiccation, samples were subjected to microwave-assisted digestion. Analyses were performed by graphite furnace atomic absorption spectrometry. Mean levels for Pb, Cd, As, Ni, and Cr were, respectively, 0.27 ± 0.054, 0.65 ± 0.091, 0.09 ± 0.024, 1.26 ± 0.449, and 1.43 ± 0.630, in micrograms per gram of tobacco. No correlation was observed between Cd and any other metal analyzed. A mild correlation (r = 0.483, p < 0.05) was observed between Pb and Cr levels. Strong significant (p < 0.01) correlations were observed between Ni and Cr (r = 0.829), Ni and As (r = 0.799), Ni and Pb (r = 0.637), and between Cr and As (r = 0.621). Chromium and Ni levels were significantly higher in cigarettes from a multinational manufacturer. Our results show a high variability in heavy metal levels in cigarettes, representing an important exposure source of smokers and passive smokers to carcinogenic substances.

Keywords

Cigarette Cancer Tobacco Heavy metals Atomic absorption spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afridi, H. I., Kazi, T. G., Kazi, N. G., Jamali, M. K., Arain, M. B., Sirajuddin, G. A., et al. (2010). Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. Journal of Human Hypertension, 24, 34–43.CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2005). Toxicological profile for nickel. Atlanta: U.S Department of Health and Human Services, Public Health Services.Google Scholar
  3. Ajab, H., Yasmeen, S., Yaqub, A., Ajab, Z., Muhammad, J., Siddique, M., et al. (2008). Evaluation of trace metals in tobacco of local and imported cigarette brands used in Pakistan by spectrophotometer through microwave digestion. Journal of Toxicological Sciences, 33(4), 415–420.CrossRefGoogle Scholar
  4. Bae, J. M., Lee, M. S., Shin, M. H., Kim, D. H., Li, Z. M., & Ahn, Y. O. (2007). Cigarette smoking and risk of lung cancer in Korean men: The Seoul male cancer cohort study. Journal of Korean Medical Science, 22, 508–512.CrossRefGoogle Scholar
  5. Baena-Cagnani, C. E., Gómez, R. M., Baena-Cagnani, R., & Canonica, G. W. (2009). Impact of environmental tobacco smoke and active tobacco smoking on the development and outcomes of asthma and rhinitis. Current Opinion in Allergy and Clinical Immunology, 9, 136–140.CrossRefGoogle Scholar
  6. Carlini, E. A., Galduróz, J. C. F., Noto, A. R., & Nappo, S. A. (2002). I levantamento domiciliar sobre o uso de drogas psicotrópicas no Brasil: estudo envolvendo as 107 maiores cidades do país—2001. CEBRID; SENAD.Google Scholar
  7. Chang, M. J., Walker, K., McDaniel, R. L., & Connell, C. T. (2005). Impaction collection and slurry sampling for the determination of arsenic, cadmium, and lead in sidestream cigarette smoke by inductively coupled plasma–mass spectrometry. Journal of Environmental Monitoring, 7, 1349–1354.CrossRefGoogle Scholar
  8. Chasin, A. A. M., & Cardoso, L. M. N. (2003). Cádmio. In: F. A. Azevedo, & A. A. M. Chasin (Eds.), Metais: Gerenciamento da Toxicidade (pp. 263–298). São Paulo: Atheneu.Google Scholar
  9. Dube, M. F., & Green, C. R. (1982). Methods of collections of smoke for analytical purposes. Recent Advances in Tobacco Science, 8, 42–102.Google Scholar
  10. Erhardt, L. (2009). Cigarette smoking: An undertreated risk factor for cardiovascular disease. Atherosclerosis, 205(1), 23–32.CrossRefGoogle Scholar
  11. Galazyn-Sidorezuk, M., Brzóska, M. M., & Moniuszko-Jakoniuk, J. (2008). Estimation of polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environmental Monitoring and Assessment, 137, 481–493.CrossRefGoogle Scholar
  12. Guindon, G. E., & Boisclair, D. (2003). Past, current and future trends in tobacco use. HNP Discussion Paper, Economics of Tobacco Control Paper no. 6, Tobacco Free Initiative, World Health Organization.Google Scholar
  13. International Agency for Research on Cancer (IARC) (2009). Agents reviewed by the IARC monographs: volumes 1-100A.Google Scholar
  14. Kazi, T. G., Jalbani, N., Arian, M. B., Jamali, M. K., Afridi, H. I., Sarfraz, R. A., et al. (2009). Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 163, 302–307.CrossRefGoogle Scholar
  15. Kazi, T. G., Wadhwa, S. K., Afridi, H. I., Kazi, N., Kandhro, G. A., Baig, J. A., et al. (2010). Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients. Journal of Hazardous Materials, 176, 985–991.CrossRefGoogle Scholar
  16. Lugon-Moulin, N., Martin, F., Krauss, M. R., Ramey, P. B., & Rossi, L. (2006). Cadmium concentration in tobacco (Nicotiana tabacum L.) from different countries and its relationship with other elements. Chemosphere, 63, 1074–1096.CrossRefGoogle Scholar
  17. Machado Neto, A. S., & Cruz, A. A. (2003). Tabagismo em amostra de adolescentes escolares de Salvador-Bahia. J Penoumol, 29(5), 264–272.CrossRefGoogle Scholar
  18. Navas-Acien, A., Selvin, E., Sharrett, A. R., Calderon-Aranda, E., Silbergeld, E., & Guallar, E. (2004). Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation, 109, 3196–3201.CrossRefGoogle Scholar
  19. Nnorom, I. C., Osibanjo, O., & Oji-Nnorom, C. G. (2005). Cadmium determination in cigarettes available in Nigeria. Africana Journal of Biotechnology, 4(10), 1128–1132.Google Scholar
  20. Pavlovska, I., Orovchanec, N., & Zafirova-Ivanovska, B. (2008). Lung cancer and the smoking habit—Case control study. Prilozi, 29(2), 269–280.Google Scholar
  21. Soares, C. R. F. S., Accioly, A. M. A., Marques, T. C. L. L. S. M., Siqueira, J. O., & Moreira, F. M. S. (2001). Acúmulo e distribuição de metais pesados nas raízes, caule e folhas de mudas de árvores em solo contaminado por rejeitos de indústria de zinco. Revista Brasileira de Fisiologia Vegetal, 13(3), 302–315.CrossRefGoogle Scholar
  22. Stabbert, R., Voncken, P., Rustemeier, K., Haussmann, H. J., Roemer, E., Schaffernicht, H., et al. (2003). Toxicological evaluation of an electrically heated cigarette. Part 2: Chemical composition of mainstream smoke. Journal of Applied Toxicology, 23, 329–339.CrossRefGoogle Scholar
  23. Stavrides, J. C. (2006). Lung carcinogenesis: Pivotal role of metals in tobacco smoke. Free Radical Biology & Medicine, 41, 1017–1030.CrossRefGoogle Scholar
  24. Stephens, W. E., Calder, A., & Newton, J. (2005). Source and health implications of high toxic metal concentrations in illicit tobacco products. Environmental Science & Technology, 39, 479–488.CrossRefGoogle Scholar
  25. Torjussen, W., Zachariasen, H., & Andersen, I. (2003). Cigarette smoking and nickel exposure. Journal of Environmental Monitoring, 5, 198–201.CrossRefGoogle Scholar
  26. Torrence, K. M., McDaniel, R. L., Self, D. A., & Chang, M. J. (2002). Slurry sampling for the determination of arsenic, cadmium, and lead in mainstream cigarette smoke condensate by graphite furnace–atomic absorption spectrometry and inductively coupled plasma–mass spectrometry. Analytical and Bioanalytical Chemistry, 372, 723–731.CrossRefGoogle Scholar
  27. U.S. EPA (1992). Respiratory health effects of passive smoking: Lung cancer and other disorders (p. 525). Washington D.C.: Office of Health and Environmental Assessment.Google Scholar
  28. Zulfiqar, S., Shabbir, S., Ishaq, M., Shaukat, M. S., & Sarwar, M. I. (2006). Metal distribution in Pakistani and foreign brands of cigarette ash. Environmental Contamination and Toxicology, 77, 679–686.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gustavo Freitas de Sousa Viana
    • 1
  • Karina S. Garcia
    • 2
  • Jose Antonio Menezes-Filho
    • 1
  1. 1.Laboratory of Toxicology, College of PharmacyFederal University of Bahia—UFBASalvadorBrazil
  2. 2.Nucleus of Environmental Studies, Institute of GeosciencesFederal University of BahiaSalvadorBrazil

Personalised recommendations