Advertisement

Environmental Monitoring and Assessment

, Volume 181, Issue 1–4, pp 1–11 | Cite as

Mercury levels and health parameters in the threatened Olrog’s Gull (Larus atlanticus) from Argentina

  • Luciano Francisco La SalaEmail author
  • Pablo Fabricio Petracci
  • Judit Emmy Smits
  • Sandra Botté
  • Robert W. Furness
Article

Abstract

Mercury (Hg) exposure was investigated through feathers of Olrog’s Gull and related to health parameters in adults (hematocrit, total plasma proteins, morphometric measures, sex) and chicks (hematocrit, total plasma proteins, immunoglobulins G and M) from a colony located in estuary of Bahía Blanca, Argentina. Mercury concentrations were 5.50 ± 2.59 μg g − 1 (n = 44) in live adults, 1.85 ± 0.45 μg g − 1 (n = 45) in live chicks and 1.81 ± 0.41 μg g − 1 (n = 41) in dead chicks. Large differences were observed between live adults and live or dead chicks and small differences between live and dead chicks. In the adults, the sex of the birds was the variable that best explained Hg concentrations. Male birds had higher concentrations than females; this suggests that the clutch provides a sink for mercury during egg laying. Hg concentrations in both adults and live chicks were associated with higher hematocrits. This could be associated with upregulated erythropoiesis to compensate for increased rate of destruction of prematurely senescent, Hg-contaminated erythrocytes. Based on our results, on the levels of Hg pollution in the past in the study area, and on the dietary specialization of Olrog’s Gull, we must be vigilant about potential negative effects of Hg pollution on this population and recommend continued monitoring on this threatened species.

Keywords

Olrog’s Gull Larus atlanticus Mercury pollution Health  Feathers Bahía Blanca estuary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J. T., Takekawa, J. Y., Eagles-Smith, C. A., & Iverson, S. A. (2008). Mercury contamination and effects on survival of American avocet and black-necked stilt chicks in San Francisco Bay. Ecotoxicology, 17, 103–116.CrossRefGoogle Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  3. Barr, J. F. (1986). Population dynamics of the Common Loon (Gavia immer) associated with mercury contaminated waters in northwestern Ontario. Ottawa: Canadian Wildlife Service.Google Scholar
  4. Bearhop, S., Waldron, S., Thompson, D., & Furness, R. (2000). Bioamplification of mercury in great skua Catharacta skua chicks: The influence of trophic status as determined by stable isotope signatures of blood and feathers. Marine Pollution Bulletin, 40, 181–185.CrossRefGoogle Scholar
  5. Becker, P. H. (1992). Egg mercury levels decline with the laying sequence in charadriiformes. Bulletin of Environmental Contamination and Toxicology, 48, 762–767.Google Scholar
  6. Bianchini, A., & Gilles, R. (1996). Toxicity and accumulation of mercury in three species of crabs with different osmoregulatory capacities. Bulletin of Contamination and Toxicology, 57, 91–98.CrossRefGoogle Scholar
  7. Brasso, R. L., & Cristo, D. A. (2008). Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology, 17, 133–141.CrossRefGoogle Scholar
  8. Braune, B. M., & Gaskin, D. E. (1987). Mercury levels in Bonaparte’s Gulls (Larus philadelphia) during autumn molt in the Quoddy region, New Brunswick, Canada. Archives of Environmental Contamination and Toxicology, 16, 539–549.CrossRefGoogle Scholar
  9. Braune, B. M., Mallory, M. L., & Gilchrist, H. G. (2006). Elevated mercury levels in declining population of ivory gulls in the Canadian Arctic. Marine Pollution Bulletin, 52, 969–987.CrossRefGoogle Scholar
  10. Burger, J., & Gochfeld, M. (2004). Marine Birds as Sentinels of Environmental Pollution. EcoHealth, 1, 263–274.CrossRefGoogle Scholar
  11. Burgess, N. M., & Meyer, M. W. (2008). Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology, 17, 83–91CrossRefGoogle Scholar
  12. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference 2nd ed. New York: Springer.Google Scholar
  13. Chase, M. E., Jones, S. H., Hennigar, P., Sowles, J., Harding, G. C. H., Freeman, K., et al. (2001). Gulfwatch: Monitoring spatial and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991-1997) with the blue mussel, Mytilus edulis L. Marine Pollution Bulletin, 42, 490–504.CrossRefGoogle Scholar
  14. Dawson, R. W., & Bortolotti, G. R. (1997a). Are avian hematocrits indicative of condition? American kestrels as a model. Journal of Wildlife Management, 61, 1297–1306.CrossRefGoogle Scholar
  15. Dawson, R. W., & Bortolotti, G. R. (1997b). Total plasma protein levels as an indicator of condition in wild American kestrels (Falco sparverius). Canadian Journal of Zoology, 75, 680–686.CrossRefGoogle Scholar
  16. Dawson, R. W., & Bortolotti, G. R. (1997c). Variation in hematocrit and total plasma proteins of nestling American kestrels (Falco sparverius) in the wild. Comparative Biochemistry and Physiology A, 117, 383–390.CrossRefGoogle Scholar
  17. Delhey, J. K. V., Petracci, P. F., & Grassini, C. M. (2001a). Hallazgo de una nueva colonia de Gaviota de Olrog (Larus atlanticus) en la ría de Bahía Blanca, Argentina. Hornero, 16, 39–42.Google Scholar
  18. Delhey, J. K. V., Carrete, M., & Martínez, M. M. (2001b). Diet and feeding behaviour of Olrog’s Gull Larus atlanticus in Bahía Blanca, Argentina. Ardea, 89, 319–329.Google Scholar
  19. De Marco, S., Botté, S., & Marcovecchio, J. (2006). Mercury distribution in abiotic and biological compartments within several estuarine systems from Argentina: 1980–2005 period. Chemosphere, 65, 213–223.CrossRefGoogle Scholar
  20. Dommergue, A., Sprovieri, F., Pirrone, N., Ebinghaus, R., Brooks, S., Courteaud, J., et al. (2010). Overview of mercury measurements in the Antarctic troposphere. Atmospheric Chemistry and Physics, 10, 3309–3319.CrossRefGoogle Scholar
  21. Eisele, K., Lang, P. A., Kempe, D. S., Klarl, B. A., Niemöller, O., Wieder, T., et al. (2006). Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicology and Applied Pharmacology, 210, 116–122.CrossRefGoogle Scholar
  22. Escalante, R. (1966). Notes on the Uruguayan population of Larus belcheri. Condor, 68, 507–510Google Scholar
  23. Evers, D. C., Savoy, L. J., DeSorbo, C. R., Yates, D. E., Hanson, W., Taylor, K. M., et al. (2008). Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology, 17, 69–81.CrossRefGoogle Scholar
  24. Falusi, B. A., & Olanipekun, E. O. (2007). Bioconcentration factors of heavy metals in tropical crab (Carcinus sp.) from River Aponwe, Ado-Ekiti, Nigeria. Applied Sciences and Environmental Management, 11, 51–54.Google Scholar
  25. Fialkowski, W., & Newman, W. A. (1998). A pilot study of heavy metal accumulations in a barnacle from the Salton Sea, Southern California. Marine Pollution Bulletin, 36, 138–143.CrossRefGoogle Scholar
  26. Föller, M., Huber, S. M., & Lang, F. (2008). Erythocyte programmed cell death. IUBMB Life, 60, 661–668.CrossRefGoogle Scholar
  27. Frederick, P. C., Hylton, B., Heath, J. A., & Spalding, M. G. (2004). A historical record of mercury contamination in southern Florida (USA) as inferred from avian feather tissue. Environmental Toxicology and Chemistry, 23, 1474–1478.CrossRefGoogle Scholar
  28. Freije, R. H., & Marcovecchio, J. E. (2004). Oceanografía química del estuario de Bahía Blanca. In M. C. Piccolo & M. Hoffmeyer (Eds.), El ecosistema del estuario de Bahía Blanca (pp. 69–78). Bahía Blanca (Argentina): IADO.Google Scholar
  29. Fox, G. A., Grasman, K. A., & Campbell, G. D. (2007a). Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. II. Cellular and histopathological measures. Journal of Toxicology and Environmental Health, Part A, 70, 1471–1491.CrossRefGoogle Scholar
  30. Fox, G. A., Jeffrey, D. A., Williams, K. S., Kennedy, S. W., & Grasman, K. A. (2007b). Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. I. Biochemical measures. Journal of Toxicology and Environmental Health, Part A, 70, 1443–1470.CrossRefGoogle Scholar
  31. Furness, R. W., Lewis, S. A., & Mills, J. A. (1990). Mercury levels in the plumage of red-billed gulls Larus novaehollandiae scopulinus of known sex and age. Environmental Pollution, 63, 33–39.CrossRefGoogle Scholar
  32. Furness, R. W., Muirhead, S. J., & Woodburn, M. (1986). Using bird feathers to measure mercury in the environment: Relationships between mercury content and moult. Marine Pollution Bulletin, 17, 27–30.CrossRefGoogle Scholar
  33. Gbaruko, B. C., & Friday, O. U. (2007). Bioaccumulation of heavy metals in some fauna and flora. International Journal of Environmental Science and Technology, 4, 197–202.Google Scholar
  34. Gill, T. S., & Pant, J. C. (1985). Effect of organomercurial poisoning on the peripheral blood and metabolite levels of a freshwater fish. Ecotoxicology and Environmental Safety, 10, 150–158.CrossRefGoogle Scholar
  35. Hoffman, D. J., Henny, C. J., Hill, E. F., Grove, R. A., Kaiser, J. L., & Stebbins, K. R. (2009). Mercury and drought along the lower Carson River, Nevada: III. Effects on blood and organ biochemistry and histopathology of snowy egrets and black-crowned night-herons on Lahontan Reservoir, 2002–2006. Journal of Toxicology and Environmental Health, Part A, 72, 1223–1241.CrossRefGoogle Scholar
  36. Hoffman, D. J., Spalding, M. G., & Frederick, P. C. (2005). Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environmental Toxicology and Chemistry, 24, 3078–3084.CrossRefGoogle Scholar
  37. IUCN (2010). IUCN Red List of Threatened Species. Version 2010.1. http://www.iucnredlist.org. Accessed 21 April 2010.
  38. Kenow, K. P., Grasman, K. A., Hines, R. K., Meyer, M. W., Gendron-Fitzpatrick, A., Spalding, M. G., et al. (2007). Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer). Environmental Toxicology and Chemistry, 26, 1460–1469.CrossRefGoogle Scholar
  39. Kenow, K. P., Gutreuter, S., Hines, R. K., Meyer, M. W., Fournier, F., & Karasov, W. H. (2003). Effects of methyl mercury exposure on the growth of juvenile common loons. Ecotoxicology, 12, 171–182.CrossRefGoogle Scholar
  40. Lewis, S. A., Becker, P. H., & Furness, R. W. (1993). Mercury levels in eggs, internal tissues and feathers of Herring Gulls Larus argentatus from the German Wadden Sea. Environmental Pollution, 80, 293–299.CrossRefGoogle Scholar
  41. Magos, L. (1987). The absorption, distribution, and excretion of methyl mercury. In C. U. Eccles & Z. Annau (Eds.), The toxicity of methyl mercury (pp. 24–44). Baltimore: Johns Hopkins University Press.Google Scholar
  42. Mallory, M., Robinson, S. A., Hebert, C. E., & Forbes, M. R. (2010). Seabirds as indicators of aquatic ecosystem conditions: A case for gathering multiple proxies of seabird health. Marine Pollution Bulletin, 60, 7–12.CrossRefGoogle Scholar
  43. Marcovecchio, J., Lara, R., & Gómez, E. (1986). Total mercury in marine sediments near a sewage outfall. Relation with organic matter. Environmental Technology Letters, 7, 501–507.CrossRefGoogle Scholar
  44. Marcovecchio, J. E., Moreno, V., & Pérez, A. (1988). Determination of heavy metal concentrations in the biota of Bahía Blanca. Argentina. Science of the Total Environment, 75, 181–190.CrossRefGoogle Scholar
  45. Marcovecchio, J. E., Moreno, V., & Pérez, A. (1991). Heavy metals accumulation in tissues of sharks from the Bahía Blanca estuary, Argentina. Marine Environmental Research, 31, 263–274.CrossRefGoogle Scholar
  46. Martinez, M. M., Isacch, J. P., & Rojas, M. (2000). Olrog’s Gull Larus atlanticus: Specialist or generalist? Bird Conservation International, 10, 89–92.CrossRefGoogle Scholar
  47. Monteiro, L. R., & Furness, R. W. (1995). Seabirds as monitors of mercury in the marine environment. Water, Air, and Soil Pollution, 80, 851–870.CrossRefGoogle Scholar
  48. Monteiro, L. R., & Furness, R. W. (2001). Kinetics, dose-response, excretion, and toxicity of methylmercury in free-living Cory’s shearwater chicks. Environmental Toxicology and Chemistry, 20, 1816–1823.Google Scholar
  49. Müller, W., Groothuis, T. G. G., Dijkstra, C., Siitari, H., & Alatalo, R. V. (2004). Maternal antibody transmission and breeding densities in the Black-headed Gull Larus ridibundus. Functional Ecology, 18, 719–724.CrossRefGoogle Scholar
  50. Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. Behavioral Ecology, 15, 1044–1045.CrossRefGoogle Scholar
  51. Quintana, F., López, G. C., & Somoza, G. (2008). A cheap and quick method for DNA-based sexing of birds. Waterbirds, 31, 485–488.CrossRefGoogle Scholar
  52. R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
  53. Schreiber, E. A., & Burger, J. (2002). Effects of chemicals and pollution on seabirds. In E. A. Schreiber & J. Burger (Eds.), Biology of marine birds (p. 722). New York: CRC.Google Scholar
  54. Spalding, M. G., Frederick, P. C., McGill, H. C., Bouton, S. N., Richey, L. J., Schumacher, M., et al. (2000). Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. Journal of Wildlife Diseases, 36, 423–435.Google Scholar
  55. Stewart, F. M., Thompson, D. R., Furness, R. W., & Harrison, N. (1994). Seasonal variation in heavy metal levels in tissues of common guillemots, Uria aalge, from northwest Scotland. Archives of Environmental Contamination and Toxicology, 27, 168–175.CrossRefGoogle Scholar
  56. Sturkie, P. D., & Griminger, P. (1976). Blood: physical characteristics, formed elements, hemoglobin, and coagulation. In P. D. Sturkie (Ed.), Avian physiology (3rd ed., pp. 53–75). Berlin, Germany, Springer.Google Scholar
  57. Thompson, D. R. (1990). Metal levels in marine vertebrates. In R. W. Furness & P. S. Rainbow (Eds.), Heavy metals in the marine environment. New York, CRC.Google Scholar
  58. Thompson, D. R., Hamer, K. C., & Furness, R. W. (1991). Mercury accumulation in great skuas Catharacta skua of known age and sex, and its effects upon breeding and survival. Journal of Applied Ecology, 28, 672–684.CrossRefGoogle Scholar
  59. Yorio, P., Bertellotti, M., & García Borboroglu, P. (2005). Estado poblacional y de conservación de gaviotas que se reproducen en el litoral marítimo Argentino. Hornero, 20, 53–57.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Luciano Francisco La Sala
    • 1
    Email author
  • Pablo Fabricio Petracci
    • 2
  • Judit Emmy Smits
    • 3
  • Sandra Botté
    • 4
    • 5
  • Robert W. Furness
    • 6
  1. 1.Centro de Estudios Parasitológicos y de Vectores (CONICET)La PlataArgentina
  2. 2.Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Department of Ecosystem and Public Health, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada
  4. 4.Instituto Argentino de Oceanografía, CCT-CONICETBlancaArgentina
  5. 5.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  6. 6.College of Medicine, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations