Advertisement

Environmental Monitoring and Assessment

, Volume 180, Issue 1–4, pp 1–13 | Cite as

Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment

  • Christopher W. BaterEmail author
  • Nicholas C. Coops
  • Michael A. Wulder
  • Thomas Hilker
  • Scott E. Nielsen
  • Greg McDermid
  • Gordon B. Stenhouse
Open Access
Article

Abstract

Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r 2 = 0.61, df = 1, F = 14.3, p = 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r 2 = 0.72, df = 1, F = 23.09, p = 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices.

Keywords

Plant phenology Near-surface remote sensing Time-lapse photography Ursus arctos 

References

  1. Adamsen, F. J., Coffelt, T. A., Nelson, J. M., Barnes, E. M., & Rice, R. C. (2000). Method for using images from a color digital camera to estimate flower number. Crop Science, 40, 704–709.CrossRefGoogle Scholar
  2. Ahrends, H. E., Brügger, R., Stöckli, R., Schenk, J., Michna, P., Jeanneret, F., et al. (2008). Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography. Journal of Geophysical Research, 113, G04004. doi: 10.1029/2007JG000650.CrossRefGoogle Scholar
  3. Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135, 126–146.CrossRefGoogle Scholar
  4. Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., & Monfray, P. (2000). A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 6, 709–725.CrossRefGoogle Scholar
  5. Bradley, E., Roberts, D., & Still, C. (2010). Design of an image analysis website for phenological and meteorological monitoring. Environmental Monitoring and Software, 25, 107–116.CrossRefGoogle Scholar
  6. Craighead, J. J., Sumner, J. S., & Mitchell, J. A. (1995). The grizzly bears of Yellowstone: Their ecology in the Yellowstone Ecosystem, 1959–1992. Washington DC: Island Press.Google Scholar
  7. Dahle, B., Sørensen, O. J., Wedul, E. H., Swenson, J. E., & Sandegren, F. (1998). The diet of brown bears Ursus arctos in central Scandinavia: Effect of access to free-ranging domestic sheep Ovis aries. Wildlife Biology, 4, 147–158.Google Scholar
  8. Dierschke, H. (1972). On the recording and presentation of phenological phenomena in plant communities. English translation of: Zur Aufnahme und Darstellung phänologischer Erscheinungen in Pflanzengesellschaften. The Hague: Translated by R.E. Wessell and S.S. Talbot. 1970 International Symposium for Vegetation Science.Google Scholar
  9. Fisher, J. I., Mustard, J. F., & Vadeboncoeur, M. A. (2006). Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sensing of Environment, 100, 265–279.CrossRefGoogle Scholar
  10. Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207–2218.CrossRefGoogle Scholar
  11. Graham, E. A., Hamilton, M. P., Mishler, B. D., Rundel, P. W., & Hansen, M. H. (2006). Use of a networked digital camera to estimate net CO2 uptake of a desiccation-tolerant moss. International Journal of Plant Sciences, 167, 751–758.CrossRefGoogle Scholar
  12. Graham, E. A., Riordan, E. C., Yuen, E. M., Estrin, D., & Rundel, P. W. (2010). Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system. Global Change Biology, 16, 3014–3023. doi: 10.1111/j.1365-2486.2010.02164.x.Google Scholar
  13. Hamer, D., & Herrero, S. (1987). Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. In Zager, P. (ed.), Proceedings of 7th International Conference on Bear Research and Management (pp. 199–213). Williamsburg, Va, U.S.A and Plityice Lakes, Yugoslavia, February and March 1986: International Association of Bear Research and Management.Google Scholar
  14. Hamer, D., Herrero, S., & Brady, K. (1991). Food and habitat used by grizzly bears, Ursus arctos, along the continental divide in Waterton Lakes National Park, Alberta. Canadian Field-Naturalist, 105, 325–329.Google Scholar
  15. Ide, R., & Oguma, H. (2010). Use of digital cameras for phenological observations. Ecological Informatics, 5, 339–347.CrossRefGoogle Scholar
  16. Keller, M., Schimel, D. S., Hargrove, W. W., & Hoffman, F. M. (2008). A continental strategy for the National Ecological Observatory Network. Frontiers in Ecology and the Environment, 6, 282–284.CrossRefGoogle Scholar
  17. McLellan, B. N., & Hovey, F.W. (2001). Habitats selected by grizzly bears in a multiple use landscape. Journal of Wildlife Management, 65, 92–99.CrossRefGoogle Scholar
  18. Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63, 282–293.CrossRefGoogle Scholar
  19. Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B., & Boyce, M. S. (2006). Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. Journal of Mammology, 87, 1112–1121.CrossRefGoogle Scholar
  20. Nielsen, S. E. (2005). Habitat Ecology, Conservation, and Projected Population Viability of Grizzly Bears (Ursus arctos L.) in West-Central Alberta, Canada. Ph.D dissertation. Edmonton, Alberta: Department of Biological Sciences, University of Alberta.Google Scholar
  21. Nielsen, S. E., Boyce, M. S., Stenhouse, G. B., & Munro, R. H. M. (2003). Development and testing of phenologically driven grizzly bear habitat models. Ecoscience, 10, 1–10.Google Scholar
  22. Nielsen, S. E. , McDermid, G., Stenhouse, G. B., & Boyce, M. S. (2010). Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biological Conservation, 143, 1623–1634.CrossRefGoogle Scholar
  23. Persson, I. L., Wikan, S., Swenson, J. E., & Mysterud, I. (2001). The diet of the brown bear Ursus arctos in the Pasvik Valley, northeastern Norway. Wildlife Biology, 7, 27–37.Google Scholar
  24. Purcell, L. C. (2000). Soybean canopy coverage and light interception measurements using digital imagery. Crop Science, 40, 834–837.CrossRefGoogle Scholar
  25. Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703–714.CrossRefGoogle Scholar
  26. Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., & Smith, M. L. (2007). Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia, 152, 323–334.CrossRefGoogle Scholar
  27. Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P., & Ollinger, S. V. (2009). Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications, 19, 1417–1428.CrossRefGoogle Scholar
  28. Rogers, L. N. (1987). Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildlife Monographs, 51, 1–72.Google Scholar
  29. Schwartz, M. D., & Reed, B. C. (1999). Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. International Journal of Remote Sensing, 20, 3451–3457.CrossRefGoogle Scholar
  30. Schwartz, M. D., Reed, B. C., & White, M. A. (2002). Assessing satellite-derived start-of-season measures in the conterminous USA. International Journal of Climatology, 22, 1793–1805.CrossRefGoogle Scholar
  31. Soudani, K., le Maire, G., Dufrêne, E., François, C., Delpierre, N., Ulrich, E., et al. (2008). Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sensing of Environment, 112, 2643–2655.CrossRefGoogle Scholar
  32. Studer, S., Stöckli, R., Appenzeller, C., & Vidale, P. L. (2007). A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51, 405–414.CrossRefGoogle Scholar
  33. Waring, R. H., Coops, N. C., Fan, W., & Nightingale, J. M. (2006). MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous U.S.A. Remote Sensing of Environment, 103, 218–226.CrossRefGoogle Scholar
  34. White, M. A., & Nemani, R. R. (2003). Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 9, 967–972.CrossRefGoogle Scholar
  35. White, M. A., Running, S. W., & Thornton, P. E. (1999). The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern U.S. deciduous forest. International Journal of Biometeorology, 42, 139–145.CrossRefGoogle Scholar
  36. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38, 259–269.Google Scholar
  37. Xiao, J., & Moody, A. (2004). Photosynthetic activity of US biomes: Responses to the spatial variability and seasonality of precipitation and temperature. Global Change Biology, 10, 437–451.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Christopher W. Bater
    • 1
    Email author
  • Nicholas C. Coops
    • 1
  • Michael A. Wulder
    • 2
  • Thomas Hilker
    • 1
  • Scott E. Nielsen
    • 3
  • Greg McDermid
    • 4
  • Gordon B. Stenhouse
    • 5
  1. 1.Department of Forest Resources ManagementUniversity of British ColumbiaVancouverCanada
  2. 2.Canadian Forest Service (Pacific Forestry Centre)Natural Resources CanadaVictoriaCanada
  3. 3.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  4. 4.Department of GeographyUniversity of CalgaryCalgaryCanada
  5. 5.Foothills Research InstituteHintonCanada

Personalised recommendations