Environmental Monitoring and Assessment

, Volume 174, Issue 1–4, pp 65–89 | Cite as

Acidification reversal in low mountain range streams of Germany

  • Carina Sucker
  • Klaus von Wilpert
  • Heike Puhlmann
Article

Abstract

This study evaluates the acidification status and trends in streams of forested mountain ranges in Germany in consequence of reduced anthropogenic deposition since the mid 1980s. The analysis is based on water quality data for 86 long-term monitored streams in the Ore Mountains, the Bavarian Forest, the Fichtelgebirge, the Harz Mountains, the Spessart, the Black Forest, the Thuringian Forest, and the Rheinisches Schiefergebirge of Germany and the Vosges of France. Within the observation period, which starts for the individual streams between 1980 and 2001 and ends between 1990 and 2009, trends in chemical water quality were calculated with the Seasonal Mann Kendall Test. About 87% of the streams show significant (p < 0.05) negative trends in sulfate. The general reduction in acid deposition resulted in increased pH values (significant for 66% of the streams) and subsequently decreased base cation concentrations in the stream water (for calcium significant in 58% and magnesium 49% of the streams). Reaction products of acidification such as aluminum (significant for 50%) or manganese (significant for 69%) also decreased. Nitrate (52% with significant decrease) and chloride (38% with significant increase) have less pronounced trends and more variable spatial patterns. For the quotient of acidification, which is the ratio of the sum of base cations and the sum of acid anions, no clear trend is observed: in 44% of the monitored streams values significantly decreased and in 23% values significantly increased. A notable observation is the increasing DOC concentration, which is significant for 55% of the observed streams.

Keywords

Water quality Acidification Forested catchments Deposition Germany 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J. D., Nadelhoffer, K. J., Steuder, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378–386.CrossRefGoogle Scholar
  2. Alewell, C., Armbruster, M., Bittersohl, J., Evans, C. D., Meesenburg, H., Moritz, K., et al. (2001). Are there signs of aquatic recovery after two decades of reduced acid deposition in the low mountain ranges of Germany? Hydrology and Earth System Science, 5, 367–378.CrossRefGoogle Scholar
  3. Alewell, C., Manderscheid, B., Bittersohl, J., & Meesenburg, H. (2000). Is acidification still an ecological threat? Nature, 407, 856–857.CrossRefGoogle Scholar
  4. Armbruster, M. (1998). Zeitliche Dynamik der Wasser- und Elementflüsse in Waldökosystemen. Freiburger Bodenkundliche Abhandlungen, 38, 1–301.Google Scholar
  5. Armbruster, M., Abiy, M., & Feger, K. H. (2003). The biogeochemistry of two forested catchments in the Black Forest and the eastern Ore Mountains (Germany) - Effects of changing atmospheric inputs on soil solution and streamwater chemistry. Biogeochemistry, 65, 341–368.CrossRefGoogle Scholar
  6. Baker, J. P., & Schofield, C. L. (1982). Aluminum toxicity to fish in acidic waters. Water Air Soil Pollution, 18, 289–309.CrossRefGoogle Scholar
  7. Beudert, B., & Klöcking, B. (2007). Große Ohe: Impact of bark beetle infestation on the water and matter budget of a forested catchment. In: H. Puhlmann, & R. Schwarze (Eds.), Forest hydrology – Results of research in Germany and Russia (pp. 41–63). Koblenz: Part I. IHP-HWRP-Berichte, H. 6.Google Scholar
  8. Bihl, C. (2004). Erschließung und Einsatz mineralischer Sekundärrohstoffe im Bodenschutz im Wald. Deutsche Nationalbiliothek.Google Scholar
  9. Braukmann, U. (2001). Stream acidification in South Germany – Chemical and biological assessment methods and trends. Aquatic Ecology, 35, 207–232.CrossRefGoogle Scholar
  10. Burkey, J. (2009). Mann-Kendall Tau-b with Sen’s Method (enhanced). Available online at http://www.mathworks.in/matlabcentral/fileexchange/11190. Accessed on 19 July 2010.
  11. Davies, J. J. L., Jenkins, A., Monteith, D. T., Evans, C. D., & Cooper, D. M. (2005). Trends in surface water chemistry of acidified UK Freshwaters, 1988–2002. Environmental Pollution, 137, 27–39.CrossRefGoogle Scholar
  12. Diefenbach-Fries, H., & Beudert, B. (2007). Report on national ICP IM activities in Germany. Fifteen years of monitoring in the Forellenbach area—Using mass balances, bioindication, and modelling approaches to detect air pollution effects in a rapidly changing ecosystem: Main results. In: S. Kleemola, & M. Forsius (Eds.), 16th Annual Report 2007 (pp. 63–81). UNECE ICP Integrated Monitoring. The Finnish Environment 26/2007, Finnish Environment Institute, Helsinki.Google Scholar
  13. Dise, N., Matzner, E., & Gundersen, P. (1998). Nitrogen status of European forest ecosystems. Water Air Soil Pollution, 105(1/2), 143–154.CrossRefGoogle Scholar
  14. Ditsche-Kuru, P. (2003). Wald in Wasserschutzgebieten von Trinkwassertalsperren - Zusammenfassung und Auswertung der ATT-Untersuchungsprogramme (p. 110) (unpublished report).Google Scholar
  15. Driscoll, C. T., Bisogni, J. J., & Schofield, C. L. (1980). Effect of aluminum speciation on fish in dilute acidified waters. Nature, 248, 161–164.CrossRefGoogle Scholar
  16. Driscoll, C. T., Likens, G. E., Hedin, L. O., Eaton, J. S., & Borman, F. H. (1989). Changes in the chemistry of surface waters. Environmental Science & Technology, 23, 137–143.CrossRefGoogle Scholar
  17. Evans, C. D., Cullen, J. M., Alewell, C., Marchetto, A., Moldan, F., Kopácek, J., et al. (2001a). Recovery from acidification in European surface waters. Hydrology and Earth System Science, 5, 283–297.CrossRefGoogle Scholar
  18. Evans, C. D., Harriman, R., Monteith, D. T., & Jenkins, A. (2001b). Assessing the suitability of acid neutralising capacity as a measure of long-term trends in acidic waters based on two parallel datasets. Water Air Soil Pollution, 130, 1541–1546.CrossRefGoogle Scholar
  19. Feger, K. H., Martin, D., & Zöttl, H. W. (1995). Entwicklung der Gewässerazidität im Schwarzwald - sind depositionsbedingte Veränderungen erkennbar? Die Naturwissenschaften, 82, 420–423.Google Scholar
  20. Fink, S., Feger, K. H., Gülpen, M., Armbruster, M., & Lorenz, K. (1999). Magnesium-Mangelvergilbung an Fichte – Einfluss von frühsommerlicher Trockenheit und. Dolomit-Kalkung. FZKA-BWPLUS-Berichtsreihe 25. Available online at http://bwplus.fzk.de/berichte/SBer/PEF197001SBer.pdf. Accessed on 26 July 2010.
  21. Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., & Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412, 785.CrossRefGoogle Scholar
  22. Gäth, S., & Frese, H. G. (1991). Einfluss der Landnutzungsform auf die Nitratbelastung des Grundwassers im Osthessischen Bergland. Mitteilungen Deutsche Bodenkundliche Gesellschaft, 66, 943–946.Google Scholar
  23. Gauger, T., Haenel, H.-D., Rösemann, C., Dämmgen, U., Bleeker, A., Erisman, J. W., et al. (2008). National Implementation of the UNECE Convention on Long-range Transboundary Air Pollution (Effects) / Nationale Umsetzung UNECE-Luftreinhaltekonvention (Wirkungen): Part 1: Deposition Loads: Methods, modelling and mapping results, trends. BMU/UBA 204 63 252. UBA-Texte 38/08 (1). ISSN 1862-4804.Google Scholar
  24. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand Reinhold Inc.Google Scholar
  25. Gray, N. F. (2008). Drinking water quality: Problems and solutions (2nd ed.). Cambridge University Press.Google Scholar
  26. Grunewald, K., Scheithauer, J., Böhm, A., & Pavlik, D. (2004). Einzugsgebietsbewirtschaftung von Trinkwassertalsperren im Erzgebirge unter dem Aspekt veränderter Huminstoffeinträge. In: Bronstert, et al. (Ed.), Forum für Hydrologie und Wasserbewirtschaftung, Heft 05, Band 1, München. (pp. 265–272).Google Scholar
  27. Harriman, R., Watt, A. W., Christie, A. E. G., Moore, D. W., McCartney, A. G., & Taylor, E. M. (2003). Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification. The Science of the Total Environment, 310, 101–111.CrossRefGoogle Scholar
  28. Hegg, C., Jeisy, M., & Waldner, P. (2004). Wald und Trinkwasser, Eine Literaturstudie. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, WSL, Birmensdorf.Google Scholar
  29. Hildebrand, E. E. (1991). The influence of forest site fertilisation on soil solution chemistry. Berichtsband des Seminars des ECE/FAO/ILO-Gemeinschaftsausschusses vom 26.-30.6.1990 in München, über Schonung und Verbesserung des Bodens als Grundlage nachhaltiger Forstwirtschaft (pp. 193–204). Bonn MELF.Google Scholar
  30. Hildebrand, E. E., & Schack-Kirchner, H. (2000). Initial effects of lime and rock powder application on soil solution chemistry in a dystric cambisol - Results of model experiments. Nutrient Cycling in Agroecosystems, 56, 69–78.CrossRefGoogle Scholar
  31. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resouces Research, 20(6), 727–732.CrossRefGoogle Scholar
  32. Jordi, B. (2005). Der Waldboden – ein optimaler Filter. WSL – Umwelt.Google Scholar
  33. Kaufmann, H., & Nussbaumer, T. (1999). Bildung und Eigenschaften von Chlorverbindungen bei Verbrennung biogener Brennstoffe. Gefahrstoffe – Reinhaltung der Luft, 59(7/8), 267–272.Google Scholar
  34. Kopácek, J., Hejzlar, J., Stuchlík, E., Fott, J., & Vesely’, J. (1998). Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnology Oceanography, 43, 357–361.CrossRefGoogle Scholar
  35. Kopácek, J., Stuchlík, E., Veselý, J., Schaumburg, J., Anderson, I., Fott, J., et al. (2002). Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water Air Soil Pollution, 2, 91–114, Focus.Google Scholar
  36. Körner, J. (1996). Abflussbildung, Interflow und Stoffbilanz im Schönbuch Waldgebiet (206 pp.). Institut und Museum für Geologie und Paläontologie der Universität Tübingen.Google Scholar
  37. Kreutzer, K. (1994). Folgerungen aus der Höglwaldforschung. AFZ-Der Wald, 14, 769–774.Google Scholar
  38. Lenz, R. J. M., Müller, A., & Erhard, M. (1994). Veränderungen der Säureneutralisationskapazität nordostbayerischer Wälder. Forstarchiv, 65, 172–182.Google Scholar
  39. Lorz, C., Hruška, J., & Krám, P. (2003). Modeling and monitoring of long-term acidification in an upland catchment of the Western Ore Mountains, SE Germany, SE-Germany. The Science of the Total Environment, 310, 153–161.CrossRefGoogle Scholar
  40. Lorz, C., & Schneider, B. (2003). Regenerierung eines versauerten Fließgewässers im Oberen Westerzgebirge. In: Freiburger Forstliche Forschung, Heft 49, 137–151.Google Scholar
  41. Majer, V., Cosby, B. J., Kopacek, J., & Veselý, J. (2003). Modelling reversibility of Central European mountain lakes from acidification: Part I – The Bohemian forest. Hydrology and Earth System Science, 7, 494–509.CrossRefGoogle Scholar
  42. Meesenburg, H., Eichhorn, J., & Meiwes, K. J. (2009). Atmospheric deposition and canopy interaction. In: R. Brumme, & P. K. Khanna (Eds.), Functioning and management of European beech ecosystems. Ecological Studies (pp. 265–302). Berlin: Springer.CrossRefGoogle Scholar
  43. Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air Soil Pollution, 85, 611–616.CrossRefGoogle Scholar
  44. Meesenburg, H., Meiwes, K. J., Wagner, M., & Prenzel, J. (2001). Ecosystem effects after ameliorative liming of a catchment at the Harz mountains, Germany. In: W. J. Horst, et al. (Eds.), Plant nutrition - Food security and sustainability of agro-ecosystem (pp. 914–915). Netherlands: Kluver Academic Publishers.Google Scholar
  45. Moritz, K., & Bittersohl, J. (2000). Turnover of nitrogen and acidfication in the small headwater catchment Markungsgraben. Silva Gabreta, 4, 63–70.Google Scholar
  46. OHGE (2010). Observatoire Hydro-Géochimique de l’Environnement. Available online at http://ohge.u-strasbg.fr/index.html. Accessed on 18 July 2010.
  47. Porcal, P., Koprivnjak, J. F., Molot, L. A., & Dillon, P. J. (2009). Humic substances-part 7: The biogeochemistry of dissolved organic carbon and its interactions with climate change. Environmental Science and Pollution Research, 16, 714–726.CrossRefGoogle Scholar
  48. Prechtel, A., Alewell, C., Armbruster, M., Bittersohl, J., Cullen, J. M., Evans, C. D., et al. (2001). Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrology and Earth System Science, 5(3), 311–325.CrossRefGoogle Scholar
  49. Pütz, K., Reichelt, P., Sudbrack, R., & Friemel, M. (2002). Nitratbericht Sächsischer Trinkwassertalsperren – Bericht der Landestalsperrenverwaltung des Freistaates Sachsen zur Belastung der sächsischen Talsperren mit Nitrat bis zum Jahre 2002. Pirna (pp. 55). Available online at http://www.smul.sachsen.de/de/wu/organisation/staatsbetriebe/ltv/downloads/nitratbericht2002_b.pdf. Accessed on 27 July 2010.
  50. Raben, G., Andreae, H., & Meyer-Heisig, M. (2000). Long-term acid load and its consequences in forest ecosystems of Saxony (Germany). Water Air Soil Pollution, 122, 93–103.CrossRefGoogle Scholar
  51. Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. Ecological Studies, 59, 199. New York: Springer.Google Scholar
  52. Rhode, H., Grenfelt, P., Wisniewski, J., Ågren, C., Bengtsson, G., Hultberg, H., et al. (1995). Acid Reign’ 95? In Conference summary statement from the 5th international conference on acidic deposition. Science and policy (pp. 1–15). Göteborg: Kluwer Academic Publishers.Google Scholar
  53. Schaumburg, J., Maetze, A., Lehmann, R., & Coring, E. (2010). Monitoringprogramm für versauerteGewässer durch Luftschadstoffe in der Bundesrepublik Deutschland im Rahmen der ECE - Bericht der Jahre 2007–2008; Bayerisches Landesamt für Umwelt im Auftrag des Umweltbundesamtes, München (134 p.).Google Scholar
  54. Schaumburg, J., Kifinger, B., Lehmann, R., Maetze, A., Coring, E., Baltzer, S., et al. (2008). Monitoringprogramm für versauerte Gewässer durch Luftschadstoffe in der Bundesrepublik Deutschland im Rahmen der ECE. Bericht der Jahre 2005–2006, Bayerisches Landesamt für Umwelt im Auftrag des Umweltbundesamtes, München (235 p).Google Scholar
  55. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  56. Skjelkvale, B. L., Borg, H., Hindar, A., & Wilander, A. (2007). Large scale patterns of chemical recovery in lakes in Norway and Sweden: Importance of seasalt episodes and changes in dissolved organic carbon. Applied Geochemistry, 22(6), 1174–1180.CrossRefGoogle Scholar
  57. Skjelkvale, B. L., Stoddard, J. L., Jeffers, J. N. R., Tørseth, K., Høgasen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution, 137, 165–176.CrossRefGoogle Scholar
  58. Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.CrossRefGoogle Scholar
  59. Sucker, C., & Krause, K. (2010). Increasing dissolved organic carbon concentrations in freshwaters: What is the actual driver? iForest 3: 106–108. Available online at http://www.sisef.it/iforest/show.php?id=546. Accessed on 25 July 2010.
  60. Sucker, C., Puhlmann, H., Zirlewagen, D., Wilpert, K. V., & Feger, K. H. (2009). Bodenschutzkalkungen in Wäldern zur Verbesserung der Wasserqualität – Vergleichende Untersuchungen auf Einzugsgebietsebene. Hydrologie und Wasserbewirtschaftung, 4, 250–262.Google Scholar
  61. UBA (= Umweltbundesamt) (2000). Bestimmung und Kartierung der Critical Loads & Levels für Deutschland. Available online at http://www.umweltbundesamt.de/umweltbeobachtung/uid/mapping/karte_clmax_s.htm. Accessed on 25 January 2010.
  62. UBA (= Umweltbundesamt) (Ed.) (2009). National trend tables for the German atmospheric emission reporting 1990–2008. Available online at http://www.umweltbundesamt.de/emissionen/archiv/EM_Entwicklung_in_D_Trendtabelle_LUFT_v2.1.2_EU-Submission_2010.xls.zip. Accessed on 6 July 2010.
  63. Ulrich, K. U., Paul, L., & Meybohm, A. (2006). Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: Trends of chemical reversal. Environmental Pollution, 141, 42–53.CrossRefGoogle Scholar
  64. UNECE (2009). The condition of forests in Europe, 2009 executive report, ICP forests and European commission, Hamburg and Brussels. Available online at http://www.icp-forests.org/pdf/ER2005.pdf. Accessed on 6 July 2010.
  65. Veselý, J., Hruška, J., Norton, S. A., & Johnson, C. E. (1998). Trends in the chemistry of acidified Bohemian lakes from 1984 to 1995: I. Major solutes. Water Air Soil Pollution, 108, 107–127.CrossRefGoogle Scholar
  66. Veselý, J., Majer, V., & Norton, S. A. (2002). Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environmental Pollution, 120, 275–281.CrossRefGoogle Scholar
  67. von Wilpert, K. (2007). Chemical deposition and seepage water quality in forests. In: H. Puhlmann, & R. Schwarze (Eds.), Forest hydrology – Results of research in Germany and Russia (pp. 23–36). Koblenz: Part I. IHP-HWRP-Berichte, H. 6.Google Scholar
  68. von Wilpert, K., & Puhlmann, H. (2007). Conventwald: Silvicultural management of seepage water quality. In: H. Puhlmann, & R. Schwarze (Eds.), Forest hydrology – results of research in Germany and Russia (pp. 63–90). Koblenz: Part I. IHP-HWRP-Berichte, H. 6.Google Scholar
  69. von Wilpert, K., Schäffer, J., Holzmann, S., Meining, S., Zirlewagen, D., & Augustin, N. (2010). Was Waldzustandserfassung und Forstliche Umweltüberwachung bewirkt haben – Ableitung eines langfristigen Kalkungsprogramms. AFZ-DerWald, 3, 20–25.Google Scholar
  70. von Wilpert, K., & Zirlewagen, D. (2007). Forestry Management options to maintain sustainability – Element budgets at Level II sites in South – West Germany. In: J. Eichhorn (Ed.), Forests in a changing environment – Results of 20 years ICP forests monitoring (Vol. 142, pp. 170–179). Schriften aus der Forstlichen Fakultät Universität Göttingen.Google Scholar
  71. Wellbrock, N., Riek, W., & Wolff, B. (2005). Characterisation of and changes in the atmospheric deposition situation in German forest ecosystems using multivariate statistics. European Journal Forest Research, 124, 261–271.CrossRefGoogle Scholar
  72. Westermann, F. (2000). Versauerung von Fließgewässern in Rheinland-Pfalz. Untersuchungen von Bachoberläufen im Hunsrück 1983–1999 - Entwicklungen und Trends (113 pp.). Landesamt für Wasserwirtschaft - Bericht 206/00. Mainz.Google Scholar
  73. Wolff, B., & Riek, W. (1998). Chemischer Waldbodenzustand in Deutschland, Ergebnisse der Bodenanalysen im Rahmen der BZE. Allgemeine Forst-Zeitschrift, Der Wald, 53(10), 503–506.Google Scholar
  74. Wright, R. F., Alewell, C., Cullen, J., Evans, C. D., Marchetto, A., Moldan, F., et al. (2001). Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrology and Earth System Science, 5, 299–310.CrossRefGoogle Scholar
  75. Zech, W., Guggenberger, G., & Schulten, H. R. (1994). Budgets and chemistry of dissolved organic carbon in forest soils: Effects of anthropogenic soil acidification. The Science of the Total Environment, 152, 49–62.CrossRefGoogle Scholar
  76. Zirlewagen, D., & von Wilpert, K. (2002). Was hat Waldbau mit Trinkwasservorsorge zu tun? Schriftenreihe Freiburger Forstliche Forschung, 18, 309–319.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carina Sucker
    • 1
  • Klaus von Wilpert
    • 1
  • Heike Puhlmann
    • 1
  1. 1.Forest Research Institute of Baden-WürttembergFreiburgGermany

Personalised recommendations