Advertisement

A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

  • Elisabeth Graf PannatierEmail author
  • Anne Thimonier
  • Maria Schmitt
  • Lorenz Walthert
  • Peter Waldner
Article

Abstract

Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO3–N + NH4–N), sulfate (SO4–S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO4–S deposition decreased at the nine sites, but due to the relatively low amount of SO4–S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO4–S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

Keywords

Acid deposition Acidification Soil solution ICP-Forests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alewell, C., Armbruster, M., Bittersohl, J., Evans, C. D., Meesenburg, H., Moritz, K., et al. (2001). Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrology and Earth System Sciences, 5(3), 367–378.CrossRefGoogle Scholar
  2. Alewell, C., Manderscheid, B., Gerstberger, P., & Matzner, E. (2000a). Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE-Bavaria, Germany. Journal of Plant Nutrition and Soil Science, 163, 509–516.CrossRefGoogle Scholar
  3. Alewell, C., Manderscheid, B., Meesenburg, H., & Bittersohl, J. (2000b). Is acidification still an ecological threat? Nature, 407, 856–857.CrossRefGoogle Scholar
  4. Armbruster, M., Abiy, M., & Feger, K.-H. (2003). The biogeochemistry of two forested catchments in the Black Forest and the eastern Ore Mountains (Germany). Biogeochemistry, 65(3), 341–368.CrossRefGoogle Scholar
  5. Belyazid, S., Westling, O., & Sverdrup, H. (2006). Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596–609.CrossRefGoogle Scholar
  6. Binkley, D., Driscoll, C. T., Allen, H. L., Schoeneberger, P., & McAvoy, D. (1989). Acidic deposition and forest soils: Context and case studies of the southeastern United States. New York: Springer. Ecological studies 72.Google Scholar
  7. Blaser, P., Zysset, M., Zimmermann, S., & Luster, J. (1999). Soil acidification in Southern Switzerland between 1987 and 1997: A case study based on the critical load concept. Environmental Science and Technology, 33, 2383–2389.CrossRefGoogle Scholar
  8. Boxman, A. W., Peters, R. C. J. H., & Roelofs, J. G. M. (2008). Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environmental Pollution, 156(3), 1252–1259.CrossRefGoogle Scholar
  9. Burkard, R., Bützberger, P., & Eugster, W. (2003). Vertical fogwater flux measurements above an elevated forest canopy at the Lägern research site, Switzerland. Atmospheric Environment, 37, 2979–2990.CrossRefGoogle Scholar
  10. Cherubini, P., & Innes, J. L. (2000). Switzerland: The Swiss long-term forest ecosystem research programme. In J. R. Gosz, C. French, M. Sprott, & M. White (Eds.), The international long term ecological research network 2000. Perspectives from participating networks (pp. 56–59). Albuquerque: University of New Mexico.Google Scholar
  11. Cronan, C. S., & Grigal, D. F. J. (1995). Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. Environmental Quality, 24, 209–226.CrossRefGoogle Scholar
  12. de Vries, W., Reinds, G. J., van der Salm, C., Draaijers, G. P. J., Bleeker, A., Erisman, J. W., et al. (2001). Intensive monitoring of forest ecosystems in Europe (177 pp.). 2001 Technical Report, EC, UN/ECE, Brussels, Geneva.Google Scholar
  13. De Vries, W., Reinds, G. J., & Vel, E. (2003). Intensive monitoring of forest ecosystems in Europe 2: Atmospheric deposition and its impacts on soil solution chemistry. Forest Ecology and Management, 174, 97–115.CrossRefGoogle Scholar
  14. Erisman, J. W., & de Vries, W. (1999). Nitrogen turnover and effects in forests. ECN report RX 99035. Contribution to the Welt Forum 2000 Workshop, July 2–5, Slotau, Germany (34 pp.).Google Scholar
  15. Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., et al. (2001). Recovery from acidification in European surface waters. Hydrology and Earth System Sciences, 5, 283–297.CrossRefGoogle Scholar
  16. FAO (1988). FAO/Unesco Soil Map of the World, Revised Legend, with corrections and updates. World Soil Resources Report 60, FAO, Rome. Reprinted with updates as Technical Paper 20, ISRIC, Wageningen 1997.Google Scholar
  17. FOEN (2009). NABEL – La pollution de l’air 2008. Mesures exécutées à l’aide du Réseau national d’observation des polluants atmosphériques (NABEL). Etat de l’environnement n° 0919. Berne: Office fédéral de l’environnement.Google Scholar
  18. Fölster, J., Bringmark, L., & Lundin, L. (2003). Temporal and spatial variations in soil water chemistry at three acid forest sites. Water, Air and Soil Pollution, 146, 171–195.CrossRefGoogle Scholar
  19. Graf Pannatier, E., Luster, J., Zimmermann, S., & Blaser, P. (2005). Acidification of soil solution in a chestnut forest stand in southern Switzerland: Are there signs of recovery? Environmental Science and Technology, 39, 7761–7767.CrossRefGoogle Scholar
  20. Graf Pannatier, E., Walthert, L., & Blaser, P. (2004). Solution chemistry in acid forest soils: Are the BC:Al ratios as critical as expected in Switzerland. Journal of Plant Nutrition and Soil Science, 167, 160–168.CrossRefGoogle Scholar
  21. Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests - Effects of air pollution and forest management. Environmental Reviews, 14(1), 1–57.CrossRefGoogle Scholar
  22. Heim, A., & Frey, B. (2004). Earl stage litter decomposition rates for Swiss forests. Biogeochemistry, 70, 299–313.CrossRefGoogle Scholar
  23. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.CrossRefGoogle Scholar
  24. Ivens, W. P. M. F. (1990). Atmospheric deposition onto forests: An analysis of the deposition variability by means of throughfall measurements. Ph.D. thesis, The Netherlands, University of Utrecht.Google Scholar
  25. Jansson, P. E., & Karlberg, L. (2004). Coupled heat and mass transfer model for soil-plant-atmosphere systems (435 pp.). Stockholm: Royal Institute of Technology, Dept of Civil and Environmental Engineering. http://www.lwr.kth.se/CoupModel/CoupModel.pdf.
  26. KA5 (2005). Bodenkundliche Kartieranleitung. 5. verbesserte und erweiterte Auflage Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten der Bundesrepublik Deutschland.Google Scholar
  27. Klöti, P., Keller, H., & Guecheva, M. (1989). Effects of forest canopy on throughfall precipitation chemistry. In Baltimore symposium (Vol. 179, pp. 203–209). Baltimore: International Association of Hydrological Sciences Publication.Google Scholar
  28. Kvaalen, H., Solberg, S., Clarke, N., Torp, T., & Aamlid, D. (2002). Time series study of concentrations of SO\(_{4}^{2-}\) and H +  in precipitation and soil waters in Norway. Environmental Pollution, 117, 215–224.CrossRefGoogle Scholar
  29. Lamersdorf, N. P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E. P., et al. (1998). Effect of drought experiments using roof installations on acidification/nitrification of soils. Forest Ecology and Management, 101(1–3), 95–109.CrossRefGoogle Scholar
  30. Libiseller, C. (2004). MULTMK/PARTMK, a program for the computation of Multivariate and Partial Mann–Kendall Test. Available online at http://www.ekon.slu.se/PMK. Accessed 25 August 2009.
  31. Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics, 13(1), 71–84.CrossRefGoogle Scholar
  32. Likens, G. E., Driscoll, C. T., Buso, D. C., Siccama, T. G., Johnson, C. E., Lovett, G. M., et al. (1998). The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry, 41, 89–173.CrossRefGoogle Scholar
  33. Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water, Air and Soil Pollution, 85, 611–616.CrossRefGoogle Scholar
  34. Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved organic carbon and nitrogen - A synthesis for temperate forests. Biogeochemistry, 52, 173–205.CrossRefGoogle Scholar
  35. Moffat, A. J., Kvaalen, H., Solberg, S., & Clarke, N. (2002). Temporal trends in throughfall and soil water chemistry at three Norwegian forests, 1986–1997. Forest Ecology and Management, 168, 15–28.CrossRefGoogle Scholar
  36. Neirynck, J., Janssens, I. A., Roskams, P., Quataert, P., Verschelde, P., Ceulemans, R. (2008). Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads. Biogeochemistry, 91, 201–222.CrossRefGoogle Scholar
  37. Neirynck, J., Van Ranst, E., Roskams, P., & Lust, N. (2002). Impact of decreasing throughfall depositions on soil solution chemistry at coniferous monitoring sites in northern Belgium. Forest Ecology and Management, 160, 127–142.CrossRefGoogle Scholar
  38. Oulehle, F., Hofmeister, J., Cudlin, P., & Hruska, J. (2006). The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetin, Czech Republic. Science of the Total Environment, 370(2–3), 532–544.CrossRefGoogle Scholar
  39. Prechtel, A., Alewell, C., Armbruster, M., Bittersohl, J., Cullen, J. M., Evans, C. D., et al. (2001). Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrology and Earth System Sciences, 5, 311–325.CrossRefGoogle Scholar
  40. Reinds, G. J., Posch, M., & De Vries, W. (2009a). Modelling the long-term soil response to atmospheric deposition at intensively monitored forest plots in Europe. Environmental Pollution, 157(4), 1258–1269.CrossRefGoogle Scholar
  41. Reinds, G. J., Posch, M., & Leemans, R. (2009b). Modelling recovery from soil acidification in European forests under climate change. Science of the Total Environment, 407(21), 5663–5673.CrossRefGoogle Scholar
  42. Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. New York: Springer. Ecological studies 59.Google Scholar
  43. Rogora, M., Mosello, R., Arisci, S., Brizzio, M. C., Barbieri, A., Balestrini, A., et al. (2006). An overview of atmospheric deposition chemistry over the Alps: Present status and long-term trends. Hydrobiologia, 562, 17–40.CrossRefGoogle Scholar
  44. Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7(4), 436–446.CrossRefGoogle Scholar
  45. Schramm, D., Schultze, B., & Scherzer, J. (2006). Validierung von Pedotransferfunktionen zur Berechnung von bodenhydrologischen Parametern als Grundlage für die Ermittlung von Kennwerten des Wasserhaushaltes im Rahmen der BZE II. Technical report, TU Bergakademie Freiberg, Freiberg, Germany.Google Scholar
  46. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  47. Sokolova, T. A., & Alekseeva, S. A. (2008). Adsorption of sulfate ions by soils (A Review). Eurasian Soil Science, 41(2), 140–148.Google Scholar
  48. Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., & Verheyen, K. (2008). Calculating dry deposition and canopy exchange with the canopy budget model: Review of assumptions and application to two deciduous forests. Water, Air and Soil Pollution, 191(1–4), 149–169.CrossRefGoogle Scholar
  49. Stoddard, J. L., Jeffries, D. S., Lükeville, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.CrossRefGoogle Scholar
  50. Thimonier, A., Graf Pannatier, E., Schmitt, M., Waldner, P., Walthert, L., Schleppi, P., et al. (2010a). Does exceeding the critical loads for nitrogen alter nitrate leaching, the nutrient status of trees and their crown condition at Swiss Long-term Forest Ecosystem Research (LWF) sites? European Journal of Forest Research, 129, 443–461.CrossRefGoogle Scholar
  51. Thimonier, A., Schmitt, M., Cherubini, P., & Kräuchi, N. (2001). Monitoring the Swiss forest: Building a research platform. In T. Anfodillo & V. Carraro (Eds.), Monitoraggio ambientale: Metodologie ed applicazioni. Atti del XXXVIII Corso di Cultura in Ecologia (pp. 121–134). Vito di Cadore, Centro Studi per l’Ambiente Alpino, Università degli Studi di Padova.Google Scholar
  52. Thimonier, A., Schmitt, M., Waldner, P., & Rihm, B. (2005). Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environmental Monitoring and Assessment, 104, 81–118.CrossRefGoogle Scholar
  53. Thimonier, A., Sedivy, I., & Schleppi, P. (2010b). Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods. European Journal of Forest Research, 129, 543–562.CrossRefGoogle Scholar
  54. Ulrich, B. (1983). Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In B. Ulrich & J. Pankrath (Eds.), Effects of accumulation of air pollutants in forest ecosystems (pp. 33–45). Dordrecht: Reidel.Google Scholar
  55. UNECE (2004). Mapping manual 2004: Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. UNECE Convention on Long-range Transboundary Air Pollution.Google Scholar
  56. UNECE (2008). The Condition of Forests in Europe, 2008 executive report. United Nations Economic Commission for Europe, Convention on Long-range Transboundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests).Google Scholar
  57. UNECE (2009). Proposed update of the manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, Part VI, Sampling and analysis of deposition. In E. Ulrich, R. Mosello, J. Derome, K. Derome, N. Clarke, N. König, et al. (Eds.), Expert panel on deposition. Economic Commission for Europe, Convention on Long-range Transboundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests).Google Scholar
  58. Vanguelova, E. I., Benham, S., Pitman, R., Moffat, A. J., Broadmeasdow, M., Nisbet, T., et al. (2010). Chemical fluxes in time through forest ecosystems in the UK – Soil response to pollution recovery. Environmental Pollution, 158, 1857–1869.CrossRefGoogle Scholar
  59. Waldner, P., Schaub, M., Graf Pannatier, E., Schmitt, M., Thimonier, A., & Walthert, L. (2007). Atmospheric deposition and ozone levels in Swiss Forests: Are critical values exceeded? Environmental Monitoring and Assessment, 128, 5–17.CrossRefGoogle Scholar
  60. Wallman, P., Svennson, M. G. E., Sverdrup, H., & Belyazid, S. (2005). ForSAFE - An integrated process-oriented forest model for long-term sustainability assessments. Forest Ecology and Management, 207, 19–36.CrossRefGoogle Scholar
  61. Walthert, L., Blaser, P., Lüscher, P., Luster, J., & Zimmermann, S. (2003). Langfristige Waldökosystem-Forschung LWF. Kernprojekt Bodenmatrix. Ergebnisse der ersten Erhebung 1994-199. Zürich, Eidg., Techn. Hochschule. Available online at http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=bericht&nr=276.
  62. Watmough, S. A., & Dillon, P. D. (2004). Major element fluxes from a coniferous catchment in central Ontario, 1983–1999. Biogeochemistry, 67, 369–398.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elisabeth Graf Pannatier
    • 1
    Email author
  • Anne Thimonier
    • 1
  • Maria Schmitt
    • 1
  • Lorenz Walthert
    • 1
  • Peter Waldner
    • 1
  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations