Advertisement

Environmental Monitoring and Assessment

, Volume 178, Issue 1–4, pp 95–109 | Cite as

Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan

  • Habes A. Ghrefat
  • Yousef Abu-Rukah
  • Marc A. Rosen
Article

Abstract

An investigation is reported of the degree of metal pollution in the sediments of Kafrain Dam and the origin of these metals. Fourteen sampling sites located at Kafrain Dam were chosen for collecting the surface, cutbank, and dam bank sediment samples. The sediment samples have been subjected to a total digestion technique and analyzed by atomic absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cr, Cu, Mn, and Fe. XRD analyses indicate that the sediments of Kafrain Dam are mainly composed of calcite, dolomite, quartz, orthoclase, microcline, kaolinite, and illite reflecting the geology of the study area. The enrichment factor (EF) and geoaccumulation index (I geo) have been calculated and the relative contamination levels assessed in the study area. The calculations of I geo are found to be more reliable than of those of EF. The enrichment of metals in the study area has been observed to be relatively high. I geo results reveal that the study area is not contaminated with respect to Ni, Co, Cr, Cu, and Mn; moderately to strongly contaminated with Pb; and strongly to extremely contaminated with Cd and Zn. The high contents of Pb, Cd, and Zn in the study area result from anthropogenic activities in the catchment area of the dam site. These sources mainly include the agricultural activities, sewage discharging from various sources within the study area (effluent of wastewater treatment plants, treated and untreated wastewaters, and irrigation return water), and the several industries located in the area. Degrees of correlations among the various metals in the study area are suggested by the results and the intermetallic relationship.

Keywords

Metals Enrichment factor Dam sediments Correlation analysis Geoaccumulation index Jordan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Rukah, Y. (2001). Metals distribution and speciation in sediments from Ziqlab Dam—Jordan. Geological Engineering, 25, 33–40.Google Scholar
  2. Adefemi, O. S., Olaofe, O., & Asaolu, S. S. (2007). Seasonal variation in metal distribution in the sediment of major dams in Ekiti-State. Pakistan Journal of Nutrition, 6, 705–707.CrossRefGoogle Scholar
  3. Alloway, B. J. (1990). Metals in soils. London: Wiley.Google Scholar
  4. Balls, P. W., Hull, S., Miller, B. S., Pirie, J. M., & Proctor, W. (1997). Trace metal in Scottish estuarine and coastal sediments. Marine Pollution Bulletin, 34, 42–50.CrossRefGoogle Scholar
  5. Baptista Neto, J. A., Smith, B. J., & McAllister, J. J. (2000). Metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environmental Pollution, 109, 1–9.CrossRefGoogle Scholar
  6. Bettinetti, R., Giarei, C., & Provini, A. (2003). Chemical analysis and sediment toxicity bioassays to assess the contamination of the River Lambro (Northern Italy). Archives of Environmental Contamination and Toxicology, 45, 72–78.CrossRefGoogle Scholar
  7. Bhuiyan, M. A. H., Suruvi, N. I., Dampare, S. B., Islam, M. A., Quraishi, S. B., Ganyaglo, S., et al. (2010). Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1557-6.Google Scholar
  8. Bowen, H. J. M. (1979). Environmental chemistry of the elements. New York: Academic.Google Scholar
  9. Calmano, W., & Wellerhaus, S. (1982). Dredging of contaminated sediments in Weser estuary: Chemical forms of some metals. Environmental Technology Letters, 3, 199–208.CrossRefGoogle Scholar
  10. Calmano, W., Ahlf, W., & Forstner, U. (1990). Exchange of heavy metals between sediments components and water. In J. A. C. Brockaert, S. Gvear, & F. Adams (Eds.), Metal speciation in the environment, NATO ASI series G 23503.Google Scholar
  11. Cevik, F., Göksu, M. Z., Derici, O. B., & Fındık, O. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1–4), 309–317.CrossRefGoogle Scholar
  12. Chapman, P. M. (2000). The sediment quality triad: Then, now and tomorrow. International Journal of Environmental Pollution, 13, 351–356.CrossRefGoogle Scholar
  13. Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of metals in sediments of Kaoshiung Harbor, Taiwan. Chemosphere, 66, 1431–1440.CrossRefGoogle Scholar
  14. Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 15, 1082–1091.CrossRefGoogle Scholar
  15. Conrad, C. F., & Chisholm-Brause, C. J. (2004). Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia. Marine Pollution Bulletin, 49, 319–324.CrossRefGoogle Scholar
  16. Dassenakis, M., Scoullos, M., & Gaitis, A. (1997). Trace metals transport and behaviour in the Mediterranean estuary of Acheloos river. Marine Pollution Bulletin, 34, 103–111.CrossRefGoogle Scholar
  17. Datta, D. K., & Subramanian, V. (1998). Distribution and fractionation of metals in the surface sediments of the Ganges–Brahmaputra–Meghna river system in the Bengal basin. Environmental Geology, 36(1–2), 93–101.CrossRefGoogle Scholar
  18. Ergin, M., Saydam, C., Basturk, O., Erdem, E., & Yoruk, R. (1991). Metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91, 269–285.CrossRefGoogle Scholar
  19. Esen, E., Kucuksezgin, F., & Uluturhan, E. (2010). Assessment of trace metal pollution in surface sediments of Nemrut Bay, Aegean Sea. Environmental Monitoring and Assessment, 160, 257–266.CrossRefGoogle Scholar
  20. Forstner, U. (1990). Contaminated sediments. Lecture notes in earth science. Berlin: Spinger.Google Scholar
  21. Forstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. New York: Springer.Google Scholar
  22. Galanopoulou, S., Vegenopoulos, A., & Consispoliatis, N. (2009). Anthropogenic metal pollution in the surficial sediments of the Keratsini Harbor, Saronikos Gulf, Greece. Water Air Soil Pollution, 202(1–4), 121–130.CrossRefGoogle Scholar
  23. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1 (pp. 383–412). Madison: American Society of Agronomy.Google Scholar
  24. Ghrefat, H. A., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114–2121.CrossRefGoogle Scholar
  25. Gómez-Parra, A., Forja, J. M., DelValls, T. A., Sáenz, I., & Riba, I. (2000). Early contamination by metals of the Guadalquivir estuary after the aznalcóllar mining spill (SW Spain). Marine Pollution Bulletin, 40, 15–23.CrossRefGoogle Scholar
  26. Gowd, S. S., Reddy, M. R., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.CrossRefGoogle Scholar
  27. Harte, J., Holdren, C., Schneider, R., & Shirley, C. (1991). Toxics A to Z, a guide to everyday pollution hazards (pp. 478). Oxford, England: University of California Press.Google Scholar
  28. Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition of trace element chemistry. Applied Geochemistry, 2, 437–451.CrossRefGoogle Scholar
  29. Izquierdo, C., Usero, J., & Gracia, I. (1997). Speciation of metals in sediments from salt marshes on the southern Atlantic coast of Spain. Marine Pollution Bulletin, 34, 123–128.CrossRefGoogle Scholar
  30. Jones, B., & Turki, A. (1997). Distribution and speciation of metals in surficial sediments from the Tees estuary, north-east England. Marine Pollution Bulletin, 34(10), 768–779.CrossRefGoogle Scholar
  31. Kamala-Kannan, S., Batvari, B., Lee, K., Kannan, N., Krishnamoorthy, R., Shanthi, K., et al. (2007). Assessment of metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere, 71(7), 1233–1240.CrossRefGoogle Scholar
  32. Kamala-Kannan, S., Batvari, B., Lee, K., Kannan, N., Krishnamoorthy, R., Shanthi, K., et al. (2008). Assessment of metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere, 71(7), 1233–1240.CrossRefGoogle Scholar
  33. Karadede, H., & Unlu, E. (2000). Concentrations of some metals in water, sediment and fish species from the Ataturk Dam Lake (Euphrates), Turkey. Chemosphere, 41, 1371–1376.CrossRefGoogle Scholar
  34. Kennish, M. J. (1992). Ecology of estuaries: Anthropogenic effects. Marine Science Series. USA: CRC.Google Scholar
  35. Kulahci, F., & Sen, Z. (2008). Multivariate statistical analyses of artificial radionuclides and metals contaminations in deep mud of Keban Dam Lake, Turkey. Applied Radiation and Isotopes, 66, 236–246.CrossRefGoogle Scholar
  36. Larsen, B., & Jensen, A. (1989). Evaluation of the sensitivity of sediment monitoring stationary in pollution monitoring. Marine Pollution Bulletin, 20, 556–560.CrossRefGoogle Scholar
  37. Lopez-Sanchez, J. F., Rubio, R., Samitier, C., & Rauret, G. (1996). Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Resources, 30(1), 153–159.Google Scholar
  38. Loska, K., & Wiechula, D. (2003). Application of principal component analysis for the estimation of source metal contamination in surface sediments from Rybnik Reservoir. Chemosphere, 51, 723–733.CrossRefGoogle Scholar
  39. Malkawi, A. I. H., & Al-Sheriadeh, M. (2000). Evaluation and rehabilitation of dam seepage problems. A case study: Kafrein dam. Engineering Geology, 56, 335–345.CrossRefGoogle Scholar
  40. McCave, I. N. (1984). Size spectra and aggregation of suspended particles in the deep ocean. Deep Sea Research, 31, 329–352.CrossRefGoogle Scholar
  41. Meza-Figueroa, D., Maier, R. M., de la O-Villanueva, M., Gómez-Alvarez, A., Moreno-Zazueta, A., Rivera, J., et al. (2009). The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere, 77(1), 140–147.CrossRefGoogle Scholar
  42. Mohsen, M. S. (2007). Water strategies and potential of desalination in Jordan. Desalination, 203, 27–46.CrossRefGoogle Scholar
  43. Mucha, A. P., Vasconcelos, M. T. S. D., & Bordalo, A. A. (2003). Macrobenthic community in the Doura estuary: Relations with trace metals and natural sediment characteristics. Environmental Pollution, 121, 169–180.CrossRefGoogle Scholar
  44. Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins—Veränderungen seit 1971. Umschau, 24, 778–783.Google Scholar
  45. Muller, G. (1981). Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. ChemikerZeitung, 105, 156–164.Google Scholar
  46. Nobi, E. P., Dilipan, E., Thangaradjou, T., Sivakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87(2), 253–264.CrossRefGoogle Scholar
  47. Nriagu, J. O. (1989). A global assessment of the natural sources of atmosphere trace metals. Nature, 338, 47–49.CrossRefGoogle Scholar
  48. Nuremberg, H. W. (1984). The voltammetric approach in trace metal chemistry of natural waters and atmospheric precipitation. Analytica Chimica Acta, 164, 1–21.CrossRefGoogle Scholar
  49. Routh, J., & Ikramuddin, M. (1996). Trace-element geochemistry of Onion Creek near Van Stone lead–zinc mine (Washington, USA). Chemical Geology, 133, 211–224.CrossRefGoogle Scholar
  50. Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain). Marine Pollution Bulletin, 40, 968–980.CrossRefGoogle Scholar
  51. Salameh, E. (1996). Water quality degradation in Jordan: Impacts on environment, economy and future generations resources base. Jordan: Royal Society of the Conservation of Nature.Google Scholar
  52. Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle. New York: Springer.Google Scholar
  53. Sanchez, J., Marino, N., Vaquero, M. C., Ansorena, J., & Legórburo, I. (1998). Metal pollution by old lead–zinc mines in Urumea river valley (Basque country, Spain). Soil, biota and sediment. Water Air Soil Pollution, 107, 303–319.CrossRefGoogle Scholar
  54. Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Marine Environmental Research, 48, 161–176.CrossRefGoogle Scholar
  55. Schuurmann, G., & Market, B. (1998). Ectotoxicology, ecological fundamentals, chemical exposure, and biological effects. New York: Wiley.Google Scholar
  56. Tam, N. F. Y., & Wong, W. S. (2000). Spatial variation of metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.CrossRefGoogle Scholar
  57. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  58. Van de Guchte, C. (1992). The sediment quality triad: an integrated approach to assess contaminated sediments. In P. J. Newman, M. A. Piavaux, & R. A. Sweeting (Eds.), River water quality, ecological assessment and control. Brussels: ECSC-EEC-EAEC (417–423).Google Scholar
  59. Wen, X., & Allen, H. E. (1999). Mobilization of metals from Le An River sediments. Science of Total Environment, 227, 101–108.CrossRefGoogle Scholar
  60. Williams, T. M., Rees, J. G., Kairu, K. K., & Yobe, A. C. (1996). Assessment of contamination by metals and selected organic compounds in coastal sediments and waters of Mombasa, Kenya. Technical Report W C-96-37, 85 pp.Google Scholar
  61. Williams, T. M., Rees, J. G., & Setiapermana, D. (2000). Metals and trace organic compounds in sediments and waters of Jakarta Bay and the Pulau Seribu Complex, Indonesia. Marine Pollution Bulletin, 40, 277–285.CrossRefGoogle Scholar
  62. Yaqin, J. I., Yinchang, F., Jianhi, W. U., Tan, Z. H. U., Zhipeng, B., & Chiqing, D. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20, 571–578.CrossRefGoogle Scholar
  63. Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal and Shelf Science, 54, 1051–1070.CrossRefGoogle Scholar
  64. Zollmer, V., & Irion, G. (1993). Clay mineral and metal distribution in the northeastern North Sea. Marine Geology, 111, 223–230.CrossRefGoogle Scholar
  65. Zoumis, T., Schmidt, A., Grigorova, L., & Calmano, W. (2001). Contaminants in sediments: Remobilization and demobilization. The Science of the Total Environment, 266, 195–202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Habes A. Ghrefat
    • 1
  • Yousef Abu-Rukah
    • 2
  • Marc A. Rosen
    • 3
  1. 1.Department of Geology and GeophysicsKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Earth and Environmental SciencesYarmouk UniversityIrbidJordan
  3. 3.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations