Environmental Monitoring and Assessment

, Volume 176, Issue 1–4, pp 451–464 | Cite as

The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland

  • Agnieszka Gałuszka
  • Zdzisław M. Migaszewski
  • Rafał Podlaski
  • Sabina Dołęgowska
  • Artur Michalik
Open Access


Application of chemical road deicers has a negative impact on roadside vegetation. Every year, the trees in cities suffer from direct and indirect effects of salt application for winter road maintenance. To elucidate this problem in the city of Kielce, the chemistry of snow, soil, tree bark, and leaf samples has been investigated together with an assessment of the health status of the trees. Twelve investigation sites were selected along the roads with different traffic intensity. Snow samples were collected twice during the winter and analyzed for pH, EC, Na + , Ca2 + , Mg2 + , and Cl − . In soil (collected from two depth intervals), tree bark, and leaf samples, the concentrations of B, Ca, Fe, K, Mg, Mn, N, Na, P, S, and Zn were determined. The contents of total organic carbon (TOC) in soils, as well as the pH of soil and tree bark samples were also measured. Negative symptoms revealed by roadside trees included the loss of assimilative apparatus and decreased vitality. The results of chemical analyses indicated that the snowmelt might be a substantial source of chloride ions and alkalizing substances that influenced higher pH of soils. The soil samples displayed elevated concentrations of S and Zn and lower than typical for soil contents of B, Mg, and TOC. The pH of alkaline soils favored greater bioavailability of B and reduced bioavailability of Na and Zn by the trees examined.


Sodium chloride Calcium chloride Magnesium chloride Roadside trees Snow Soils 


  1. Adams, C. R., & Early, M. P. (2004). Principles of horticulture. Oxford: Elsevier.Google Scholar
  2. Bäckström, M., Karlsson, S., Bäckman, L., Folkeson, L., & Lind, B. (2004). Mobilization of heavy metals by deicing salts in a roadside environment. Water Research, 38, 720–732. doi: 10.1016/j.watres.2003.11.006.CrossRefGoogle Scholar
  3. Blomqvist, G., & Johansson, E. -L. (1999). Airborne spreading and deposition of de-icing salt – a case study. The Science of the Total Environment, 235, 161–168. doi: 10.1016/S0048-9697(99)00209-0.CrossRefGoogle Scholar
  4. Borecki, T., & Keczyński, A. (1992). Atlas of the loss of assimilative apparatus (in Polish). Warsaw: Agencja ATUT.Google Scholar
  5. Cekstere, G., Nikodemus, O., & Osvalde, A. (2008). Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban Forestry & Urban Greening, 7, 207–217. doi: 10.1016/j.ufug.2008.02.004.CrossRefGoogle Scholar
  6. Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M., & Elsen, T. (2008). Accumulation of deicing salts in soils in an urban environment. Urban Ecosystem, 11, 17–31. doi: 10.1007/s11252-007-0031-x.CrossRefGoogle Scholar
  7. Czerniewska-Kusza, I., Kusza, G., & Dużyński, M. (2004). Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environmental Toxicology, 19(4), 296–301. doi: 10.1002/tox.20037.CrossRefGoogle Scholar
  8. Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research, 124, 319–333. doi: 10.1007/s10342-005-0085-3.CrossRefGoogle Scholar
  9. Fostad, O., & Pedersen, P. A. (2000). Container-grown tree seedling responses to sodium chloride applications in different substrates. Environmental Pollution, 109, 203–210. doi: 10.1016/S0269-7491(99)00266-3.CrossRefGoogle Scholar
  10. Foth, H. D., & Ellis, B. G. (1996). Soil fertility, 2nd Edn. New York: Lewis.Google Scholar
  11. Gałuszka, A. (2005). The chemistry of soils, rocks and plant bioindicators in three ecosystems of the Holy Cross Mountains, Poland. Environmental Monitoring and Assessment, 110, 55–70. doi: 10.1007/s10661-005-6290-1.CrossRefGoogle Scholar
  12. Ganjyal, G., Fang, Q., & Hanna, M. A. (2007). Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum. Bioresource Technology, 98, 2814–2818. doi: 10.1016/j.biortech.2006.07.042.CrossRefGoogle Scholar
  13. Godwin, K. S., Hafner, S. D., & Buff, M. F. (2003). Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environmental Pollution, 124, 273–281. doi: 10.1016/S0269-7491(02)00481-5.CrossRefGoogle Scholar
  14. Goodrich, B. A., Koski, R. D., & Jacobi, W. R. (2008). Roadside vegetation health condition and magnesium chloride (MgCl2) dust suppressant use in two Colorado, U.S. counties. Arboriculture and Urban Forestry, 34, 252–259.Google Scholar
  15. Goodrich, B. A., Koski, R. D., & Jacobi, W. R. (2009). Condition of soils and vegetation along roads treated with magnesium chloride for dust suppression. Water, Air, and Soil Pollution, 198, 165–188. doi: 10.1007/s11270-008-9835-4.CrossRefGoogle Scholar
  16. Green, S. M., Machin, R., & Cresser, M. S. (2008). Effect of long-term changes in soil chemistry induced by road salt applications on N transformations in roadside soils. Environmental Pollution, 152, 20–31. doi: 10.1016/j.envpol.2007.06.005.CrossRefGoogle Scholar
  17. Hellstén, P. P., Kivimäki, A.-L., Miettinen, I. T., Mäkinen, R. P., Salminen, J. M., & Nystén, T. H. (2005). Degradation of potassium formate in the unsaturated zone of a sandy aquifer. Journal of Environmental Quality, 34, 1665–1671. doi: 10.2134/jeq2004.0323.CrossRefGoogle Scholar
  18. Howard, K. W. F., & Maier, H. (2007). Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada. Journal of Contaminant Hydrology, 91, 146–170. doi: 10.1016/j.jconhyd.2006.10.005.CrossRefGoogle Scholar
  19. Innes, J. L. (1993). Forest health: Its assessment and status. Wallingford: CAB International.Google Scholar
  20. Judd, J. H. (1970). Lake stratification caused by runoff from street deicing. Water Research, 4, 521–532. doi: 10.1016/0043-1354(70)90002-3.CrossRefGoogle Scholar
  21. Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants. Boca Raton: CRC.Google Scholar
  22. Kayama, M., Quoreshi, A. M., Kitaoka, S., Kitahashi, Y., Sakamoto, Y., Maruyama, Y., et al. (2003). Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan. Environmental Pollution, 124, 127–137. doi: 10.1016/S0269-7491(02)00415-3.CrossRefGoogle Scholar
  23. Kincaid, D. W., & Findlay, S. E. G. (2009). Sources of elevated chloride in local streams: groundwater and soils as a potential reservoirs. Water, Air, and Soil Pollution, 203, 335–342. doi: 10.1007/s11270-009-0016-x.CrossRefGoogle Scholar
  24. Lima, J. L. F. C., Rangel, A. O. S. S., Renata, M., & Souto, S. (2000). Assay of plant tissues for elemental content by flow injection analysis. Communications in Soil Science and Plant Analysis, 31(7), 1071–1109. doi: 10.1080/00103620009370498.CrossRefGoogle Scholar
  25. Lorenz, M. (1995). International co-operative programme on assessment and monitoring of air pollution effects on forests. ICP Forests. Water, Air, and Soil Pollution, 85, 1221–1226. doi: 10.1007/BF00477148.CrossRefGoogle Scholar
  26. McBean, E., & Al-Nassri, S. (1987). Migration pattern of de-icing salts from roads. Journal of Environmental Management, 25, 231–238.Google Scholar
  27. Migaszewski, Z. M., Gałuszka, A., & Pasławski, P. (2004). Baseline element concentrations in soils and plant bioindicators of selected national parks of Poland. Geological Quarterly, 48(4), 383–394.Google Scholar
  28. Norrström, A. C. (2005). Metal mobility by de-icing salt from an infiltration trench for highway runoff. Applied Geochemistry, 20, 1907–1919. doi: 10.1016/j.apgeochem.2005.06.002.CrossRefGoogle Scholar
  29. Norrström, A. C., & Jacks, G. (1998). Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts. The Science of the Total Environment, 218, 161–174. doi: 10.1016/S0048-9697(98)00203-4.CrossRefGoogle Scholar
  30. Novotny, V., Muehring, D., Zitomer, D. H., Smith, D. W., & Facey, R. (1998). Cyanide and metal pollution by urban snowmelt: impact of deicing compounds. Water Science Technology, 38(10), 223–230.CrossRefGoogle Scholar
  31. Novotny, E. V., Murphy, D., & Stefan, H. G. (2008). Increase of urban lake salinity by road deicing salt. Science of the Total Environment, 406, 131–144. doi: 10.1016/j.scitotenv.2008.07.037.CrossRefGoogle Scholar
  32. Porcelli, C. A., Gutierrez Boem, F. H., & Lavado, R. S. (1995). The K/Na and Ca/Na ratios and rape seed yield, under soil salinity or sodicity. Plant and Soil, 175, 251–255.CrossRefGoogle Scholar
  33. Ramakrishna, D. M., & Viraraghavan, T. (2005). Environmental impact of chemical deicers—a review. Water, Air, and Soil Pollution, 166, 49–63. doi: 10.1007/s11270-005-8265-9.CrossRefGoogle Scholar
  34. Rasa, K., Peltovuori, T., & Hartikainen, H. (2006). Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Science of the Total Environment, 366, 819–825. doi: 10.1016/j.scitotenv.2005.08.007.CrossRefGoogle Scholar
  35. Robidoux, P. Y., & Delisle, C. E. (2001). Ecotoxicological evaluation of three deicers (NaCl, NaFo, CMA) effects for terrestrial organisms. Ecotoxicology and Environmental Safety, 48(2), 128–139. doi: 10.1006/eesa.2000.2035.CrossRefGoogle Scholar
  36. Rosenberry, D. O., Bukaveckas, P. A., Buso, D. C., Likens, G. E., Shapiro, A. M. & Winter, T. C. (1999). Movement of road salt to a small New Hampshire Lake. Water, Air, and Soil Pollution, 109, 179–206. doi: 10.1023/A:1005041632056.CrossRefGoogle Scholar
  37. Sæbø, A., Benedikz, T., & Randrup, T. B. (2003). Selection of trees for urban forestry in the Nordic countries. Urban Forestry & Urban Greening, 2, 101–114. doi: 10.1078/1618-8667-00027.CrossRefGoogle Scholar
  38. Tan, K. H. (2005). Soil sampling, preparation, and analysis, 2nd Edn. New York: Taylor & Francis.Google Scholar
  39. Thunqvist, E. -L. (2004). Regional increase of mean chloride concentration in water due to the application of deicing salt. Science of the Total Environment, 325, 29–37. doi: 10.1016/j.scitotenv.2003.11.020.CrossRefGoogle Scholar
  40. Trahan, N. A., & Peterson, C. M. (2007). Factors impacting the health of roadside vegetation. Colorado Department of Transportation Research Branch. Final Report No. CDOT-DTD-R-2005–12.Google Scholar
  41. Trahan, N. A., & Peterson, C. M. (2008). Impacts of magnesium chloride-based deicers on roadside vegetation. Transportation Research Circular, E-C126, 171–186.Google Scholar
  42. US EPA. (1971). Environmental Impact of Highway Deicing. New Jersey: Edison Water Quality Laboratory. Edison.Google Scholar
  43. US EPA. (1996). SW-846, Method 3050, Acid digestion of sediments, sludges, and soils, revised December 1996. Washington DC: US EPA.Google Scholar
  44. Viskari, E. -L., & Kärenlampi, L. (2000). Roadside Scots pine as an indicator of deicing salt use – a comparative study from two consecutive winters. Water, Air, and Soil Pollution, 122, 405–419. doi: 10.1023/A:1005235422943.CrossRefGoogle Scholar
  45. Zehetner, F., Rosenfellner, U., Mentler, A., & Gerzabek, M. H. (2009). Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water, Air, and Soil Pollution, 198, 125–132. doi: 10.1007/s11270-008-9831-8.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Agnieszka Gałuszka
    • 1
  • Zdzisław M. Migaszewski
    • 1
  • Rafał Podlaski
    • 2
  • Sabina Dołęgowska
    • 1
  • Artur Michalik
    • 1
  1. 1.Geochemistry and the Environment Div., Institute of ChemistryJan Kochanowski UniversityKielcePoland
  2. 2.Nature Conservation Div., Institute of BiologyJan Kochanowski UniversityKielcePoland

Personalised recommendations