Skip to main content

Advertisement

Log in

Molecular quantification of virulence gene-containing Aeromonas in water samples collected from different drinking water treatment processes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pathogenic species of Aeromonas produce a range of virulence factors, including aerolysin, cytotonic enterotoxins, and serine protease, to cause acute gastroenteritis and wound infections in humans and animals. Recognizing that not all Aeromonas strains are pathogenic, in this study, we proposed to evaluate Aeromonas removal effectiveness based on the presence of virulence gene-containing Aeromonas as a proper means to assess microbial risk of Aeromonas. We developed and applied real-time PCR assays to quantify serine protease (ser) gene- and heat-labile cytotonic enterotoxin (alt) gene-containing Aeromonas in water samples. Among 18 Aeromonas isolates from the source water, only three isolates possessed all three genes (aer, ser, and alt). A higher percent of isolates has either ser gene (89%) or alt gene (72%) compared to the percent of isolates containing aer gene (44%). Results of this study suggested that several different conventional and unconventional drinking water treatment processes could effectively remove Aeromonas from source water. As the comprehensive knowledge of the distribution of virulence factors in different Aeromonas species is currently not available, using real-time PCR to quantify various virulence factor genes in water samples and/or isolates can be a practical means for better assessment of microbial risks in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, M. J., Ansaruzzaman, M., Talukder, K. A., Chopra, A. K., Kuhn, I., Rahman, M., et al. (2000). Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls, and the environment. Journal of Clinical Microbiology, 38(10), 3785–3790.

    CAS  Google Scholar 

  • Aldape, K., Ginzinger, D. G., & Godfrey, T. E. (2002). Real-time quantitative polymerase chain reaction: A potential tool for genetic analysis in neuropathology. Brain Pathology, 12(1), 54–66.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    CAS  Google Scholar 

  • Beller, H. R., Kane, S. R., Legler, T. C., & Alvarez, P. J. J. (2002). A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environmental Science and Technology, 36(18), 3977–3984.

    Article  CAS  Google Scholar 

  • Bieche, I., Onody, P., Laurendeau, I., Olivi, M., Vidaud, D., Lidereau, R., et al. (1999). Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clinical Chemistry, 45(1), 1148–1156.

    CAS  Google Scholar 

  • Byrd, J. J., Xu, H. S., & Colwell, R. R. (1991). Viable but nonculturable bacteria in drinking water. Applied and Environmental Microbiology, 57(3), 875–878.

    CAS  Google Scholar 

  • Cascon, A., Yugueros, J., Temprano, A., Sanchez, M., Hernanz, C., Luengo, J. M., et al. (2000). A major secreted elastase is essential for pathogenicity of Aeromonas hydrophila. Infection and Immunity, 68(6), 3233–3241.

    Article  CAS  Google Scholar 

  • Cavallo, R., Acquaviva, M., & Stabili, L. (2009). Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from a Mediterranean area (Northern Ionian Sea–Italy). Environmental Monitoring and Assessment, 149(1), 465–475. doi:10.1007/s10661-008-0223-8.

    Article  CAS  Google Scholar 

  • Chacon, M. R., Figueras, M. J., Castro-Escarpulli, G., Soler, L., & Guarro, J. (2003). Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp. Antonie Van Leeuwenhoek, 84(4), 269–278.

    Article  CAS  Google Scholar 

  • Challapalli, M., Tess, B. R., Cunningham, D. G., Chopra, A. K., & Houston, C. W. (1988). Aeromonas-associated diarrhea in children. Pediatric Infectious Disease Journal, 7(10), 693–698.

    Article  CAS  Google Scholar 

  • Chopra, A. K., Houston, C. W., Genaux, C. T., Dixon, J. D., & Kurosky, A. (1986). Evidence for production of an enterotoxin and cholera toxin cross-reactive factor by Aeromonas hydrophila. Journal of Clinical Microbiology, 24(4), 661–664.

    CAS  Google Scholar 

  • Chopra, A. K., Peterson, J. W., Xu, X. J., Coppenhaver, D. H., & Houston, C. W. (1996). Molecular and biochemical characterization of a heat-labile cytotonic enterotoxin from Aeromonas hydrophila. Microbial Pathogenesis, 21(5), 357–377.

    Article  CAS  Google Scholar 

  • Colford, J. M., Roy, S. L., Beach, M. J., Hightower, A., Shaw, S. E., & Wade, T. J. (2006). A review of household drinking water intervention trials and an approach to the estimation of endemic waterborne gastroenteritis in the United States. Journal of Water and Health, 4(Suppl 2), 71–88.

    Article  Google Scholar 

  • Colwell, R. R., Brayton, P., Herrington, D., Tall, B., Huq, A., & Levine, M. M. (1996). Viable but non-culturable Vibrio cholerae 01 revert to a culturable state in the human intestine. World Journal of Microbiology and Biotechnology, 12, 28–31.

    Article  Google Scholar 

  • Dionisi, H. M., Chewning, C. S., Morgan, K. H., Menn, F. M., Easter, J. P., & Sayler, G. S. (2004). Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Applied and Environmental Microbiology, 70, 3988–3995.

    Article  CAS  Google Scholar 

  • Dionisi, H. M., Layton, A. C., Harmes, G., Gregory, I. R., Robinson, K. G., & Sayler, G. S. (2002). Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Applied and Environmental Microbiology, 68, 245–253.

    Article  CAS  Google Scholar 

  • Fujii, K., Kikuchi, S., Satomi, M., Ushio-Sata, N., & Morita, N. (2002). Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Applied and Environmental Microbiology, 68(4), 2057–2060.

    Article  CAS  Google Scholar 

  • Gavriel, A. A., Landre, J. P., & Lamb, A. J. (1998). Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland. Journal of Applied Microbiology, 84(3), 383–392.

    Article  CAS  Google Scholar 

  • Gibbs, S. G., Meckes, M. C., Green, C. F., & Scarpino, P. V. (2004). Evaluation of the ability of chlorine to inactivate selected organisms from the biofilm of a drinking water distribution system simulator following a long-term wastewater cross-connection. Journal of Environmental Engingeering and Science, 3(2), 97–105.

    Article  CAS  Google Scholar 

  • Granum, P. E., O’Sullivan, K., Tomas, J. M., & Ormen, O. (1998). Possible virulence factors of Aeromonas spp. from food and water. FEMS Immunology and Medical Microbiology, 21(2), 131–137.

    Article  CAS  Google Scholar 

  • Gruntzig, V., Nold, S. C., Zhou, J. Z., & Tiedje, J. M. (2001). Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Applied and Environmental Microbiology, 67(2), 760–768.

    Article  CAS  Google Scholar 

  • Halpern, M., Landsberg, O., Raats, D., & Rosenberg, E. (2007). Culturable and VBNC vibrio cholerae: Interactions with chironomid egg masses and their bacterial population. Microbial Ecology, 53(2), 285–293.

    Article  CAS  Google Scholar 

  • Havelaar, A. H., Versteegh, J. F., & During, M. (1990). The presence of Aeromonas in drinking water supplies in The Netherlands. Zentralblatt Fur Hygiene Und Umweltmedizin, 190(3), 236–256.

    CAS  Google Scholar 

  • Hazen, T. C., Fliermans, C. B., Hirsch, R. P., & Esch, G. W. (1978). Prevalence and distribution of Aeromonas hydrophila in the United States. Applied and Environmental Microbiology, 36(5), 731–738.

    CAS  Google Scholar 

  • Howard, S. P., Macintyre, S., & Buckley, J. T. (1996). Toxins of Aeromonas. In B. Austin, M. Altwegg, P. J. Gosling, & S. Joseph (Eds.), The genus Aeromonas (pp. 267–286). New York: Wiley.

    Google Scholar 

  • Hunter, P. R. (1993). The microbiology of bottled natural mineral waters. Journal of Applied Microbiology, 74(4), 345–352.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., & Grieve, C. M. (2003). Detection and quantification of Escherichia coli O157:H7 in environmental samples by real-time PCR. Journal of Applied Microbiology, 94(3), 421–431.

    Article  CAS  Google Scholar 

  • Khan, A. A., Kim, E., & Cerniglia, C. E. (1998). Molecular cloning, nucleotide sequence, and expression in Escherichia coli of a hemolytic toxin (aerolysin) gene from Aeromonas trota. Applied and Environmental Microbiology, 64(7), 2473–2478.

    CAS  Google Scholar 

  • Khan, A. A., Nawaz, M. S., Khan, S. A., & Cerniglia, C. E. (1999). Identification of Aeromonas trota (hybridization group 13) by amplification of the aerolysin gene using polymerase chain reaction. Molecular and Cellular Probes, 13(2), 93–98.

    Article  CAS  Google Scholar 

  • Kikuchi, T., Iwasaki, K., Nishihara, H., Takamura, Y., & Yagi, O. (2002). Quantitative and rapid detection of the trichloroethylene-degrading bacterium Methylocystis sp. M in groundwater by real-time PCR. Applied Microbiology and Biotechnology, 59(6), 731–736.

    Article  CAS  Google Scholar 

  • Kingombe, C. I. B., Huys, G., Tonolla, M., Albert, M. J., Swings, J., Peduzzi, R., et al. (1999). PCR detection, characterization, and distribution of virulence genes in Aeromonas spp. Applied and Environmental Microbiology, 65(12), 5293–5302.

    CAS  Google Scholar 

  • Knochel, S., & Jeppesen, C. (1990). Distribution and characteristics of Aeromonas in food and drinking water in Denmark. International Journal of Food Microbiology, 10(3–4), 317–322.

    Article  CAS  Google Scholar 

  • Kolb, S., Knief, C., Stubner, S., & Conrad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69, 2423–2439.

    Article  CAS  Google Scholar 

  • Kuhn, I., Albert, M. J., Ansaruzzaman, M., Bhuiyan, N. A., Alabi, S. A., Islam, M. S., et al. (1997). Characterization of Aeromonas spp. isolated from humans with diarrhea, from healthy controls, and from surface water in Bangladesh. Journal of Clinical Microbiology, 35(2), 369–373.

    CAS  Google Scholar 

  • LeChevallier, M. W., Evans, T. M., Seidler, R. J., Daily, O. P., Merell, B. P., Rollins, D. M., et al. (1982). Aeromonas sobria in chlorinated drinking water supplies. Microbial Ecology, 8, 325–333.

    Article  Google Scholar 

  • Mary, P., Chihib, N. E., Charafeddine, O., Defives, C., & Hornez, J. P. (2002). Starvation survival and viable but nonculturable states in Aeromonas hydrophila. Microbial Ecology, 43(2), 250–258.

    Article  CAS  Google Scholar 

  • Mercier, B., Burlot, L., & Ferec, C. (1999). Simultaneous screening for HBV DNA and HCV RNA genomes in blood donations using a novel TaqMan PCR assay. Journal of Virological Methods, 77(1), 1–9.

    Article  CAS  Google Scholar 

  • Messner, M., Shaw, S., Regli, S., Rotert, K., Blank, V., & Soller, J. (2006). An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. Journal of Water and Health, 4(Suppl 2), 201–240.

    Article  Google Scholar 

  • Miller, S. M., Tourlousse, D. M., Stedtfeld, R. D., Baushke, S. W., Herzog, A. B., Wick, L. M., et al. (2008). In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Applied and Environmental Microbiology, 74(7), 2200–2209.

    Article  CAS  Google Scholar 

  • Millership, S. E., & Chattopadhyay, B. (1985). Aeromonas hydrophila in chlorinated water supplies. Journal of Hospital Infection, 6(1), 75–80.

    Article  CAS  Google Scholar 

  • Pablos, M., Rodriguez-Calleja, J. M., Santos, J. A., Otero, A., & Garcia-Lopez, M.-L. (2009). Occurrence of motile Aeromonas in municipal drinking water and distribution of genes encoding virulence factors. International Journal of Food Microbiology, 135(2), 158–164.

    Article  CAS  Google Scholar 

  • Pemberton, J. M., Kidd, S. P., & Schmidt, R. (1997). Secreted enzymes of Aeromonas. FEMS Microbiology Letters, 152(1), 1–10.

    Article  CAS  Google Scholar 

  • Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H.-P., & Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 66(12), 5368–5382.

    Article  CAS  Google Scholar 

  • Purohit, H. J., & Kapley, A. (2002). PCR as an emerging option in the microbial quality control of drinking water. Trends in Biotechnology, 20(8), 325–326.

    Article  CAS  Google Scholar 

  • Rose, J. B., & Gerba, C. P. (1991). Use of risk assessment for development of microbial standards. Water Science and Technology, 24, 29–34.

    Google Scholar 

  • Sen, K., & Rodgers, M. (2004). Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. Journal of Applied Microbiology, 97, 1077–1086.

    Article  CAS  Google Scholar 

  • Suzuki, M. T., Taylor, L. T., & DeLong, E. F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Applied and Environmental Microbiology, 66(11), 4605–4614.

    Article  CAS  Google Scholar 

  • Szewzyk, U., Szewzyk, R., Manz, W., & Schleifer, K. H. (2000). Microbiological safety of drinking water. Annual Review of Microbiology, 54, 81–127.

    Article  CAS  Google Scholar 

  • Tokajian, S., & Hashwa, F. (2004). Phenotypic and genotypic identification of Aeromonas spp. isolated from a chlorinated intermittent water distribution system in Lebanon. Journal of Water Health, 2(2), 115–122.

    CAS  Google Scholar 

  • Tourlousse, D. M., Stedtfeld, R. D., Baushke, S. W., Wick, L. M., & Hashsham, S. A. (2007). Virulence factor activity relationships: Challenges and development approaches. Water Environment Research, 79(3), 246–259.

    Article  CAS  Google Scholar 

  • USEPA (2006). Aeromonas: Human health criteria document. Washington: Office of Science and Technology, Office of Water, US Environmental Protection Agency.

  • van der Kooij, D., & Hijnen, W. A. M. (1988). Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water. Applied and Environmental Microbiology, 54(11), 2842–2851.

    Google Scholar 

  • Whitby, P. W., Landon, M., & Coleman, G. (1992). The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonicida spp. salmonicida. FEMS Microbiology Letters, 99(1), 65–71.

    Article  CAS  Google Scholar 

  • Yu, C. P., Ahuja, R., Sayler, G., & Chu, K. H. (2005a). Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Applied and Environmental Microbiology, 71(3), 1433–1444.

    Article  CAS  Google Scholar 

  • Yu, C. P., Farrell, S. K., Robinson, B., & Chu, K. H. (2008). Development and application of real-time PCR assays for quantifying total and aerolysin gene-containing Aeromonas in source, intermediate, and finished drinking water. Environmental Science and Technology, 42(4), 1191–1200.

    Article  CAS  Google Scholar 

  • Yu, C. P., Roh, H., & Chu, K. H. (2007). 17β-Estradiol-degrading bacteria isolated from activated sludge. Environmental Science and Technology, 41(2), 486–492.

    Article  CAS  Google Scholar 

  • Yu, H. B., Zhang, Y. L., Lau, Y. L., Yao, F., Vilches, S., Merino, S., et al. (2005b). Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Applied and Environmental Microbiology, 71(8), 4469–4477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kung-Hui Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, CP., Chu, KH. Molecular quantification of virulence gene-containing Aeromonas in water samples collected from different drinking water treatment processes. Environ Monit Assess 176, 225–238 (2011). https://doi.org/10.1007/s10661-010-1578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1578-1

Keywords

Navigation