Environmental Monitoring and Assessment

, Volume 173, Issue 1–4, pp 709–722 | Cite as

Solid phase extraction and preconcentration of Cu(II), Pb(II), and Ni(II) in environmental samples on chemically modified Amberlite XAD-4 with a proper Schiff base

Article

Abstract

A new chelating resin, Amberlite XAD-4 loaded with N,N-bis(salicylidene)cyclohexanediamine (SCHD), was synthesized and characterized. The resin Amberlite XAD-4-SCHD was used for selective separation, preconcentration, and determination of Cu(II), Pb(II), and Ni(II) ions in water samples by flame atomic absorption spectrometry (FAAS). Effects of pH, concentration, and volume of elution solution; flow rate of elution; and sample solution, sample volume, and interfering ions for the recovery of the analytes were investigated. These metal ions can be desorbed with 0.5-M HNO3 (recovery, 98%–101%). The sorption capacity was found between 1.38×10 − 1 and 3.58×10 − 1 mmol/g. In order to evaluate the accuracy of the proposed procedure, the certified reference materials, BCR-032 (Moroccan phosphate rock) and BCR-715 (industrial effluent wastewater), were analyzed. The detection limits of the method were found to be 0.11, 1.91, and 0.43 μg/L for Cu(II), Pb(II), and Ni(II), respectively. The method was applied to the extraction and the recovery of copper, lead, and nickel in wastewater and other water samples.

Keywords

Solid phase extraction N,N-bis(salicylidene)cyclohexanediamine (SCHD) Amberlite XAD-4 Schiff’s base Preconcentration FAAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absalan, G., & Goudi, A. A. (2004). Optimizing the immobilized dithizone on surfactant-coated alumina as a new sorbent for determination of silver. Separation and Purification Technology, 38, 209–214.CrossRefGoogle Scholar
  2. Anthemidis, A. N., Zachariadis, G. A., & Stratis, J. A. (2003). Gallium trace on-line preconcentration/separation and determination using a polyurethane foam mini-column and flame atomic absorption spectrometry. Application in aluminum alloys, natural waters and urine. Talanta, 60, 929–936.CrossRefGoogle Scholar
  3. Baytak, S., & Türker, A. R. (2006). Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA. Journal of Hazardous Materials, B129, 130–136.CrossRefGoogle Scholar
  4. Buke, B., Divrikli, U., Soylak, M., & Elçi, L. (2009). On-line preconcentration of copper as its pyrocatechol violet complex on Chromosorb 105 for flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 163, 1298–1302.CrossRefGoogle Scholar
  5. Dadfarnia, S., Shabani, A. M. H., Tamaddon, F., & Rezaei, M. (2005). Immobilized salen (N,N-bis (salicylidene)ethylenediamine) as a complexing agent for on-line sorbent extraction/preconcentration and flow injection–flame atomic absorption spectrometry. Analytica Chimica Acta, 539, 69–75.CrossRefGoogle Scholar
  6. Divrikli, U., Akdogan, A., Soylak, M., & Elci, L. (2007). Solid-phase extraction of Fe(III), Pb(II) and Cr(III) in environmental samples on Amberlite XAD-7 and their determinations by flame atomic absorption spectrometry. Journal of Hazardous Materials, 149, 331–337.CrossRefGoogle Scholar
  7. Divrikli, U., Soylak, M., Elci, L., & Dogan, M. (2003). Trace heavy metal levels in street dust samples from Yozgat city center, Turkey. Journal of Trace and Microprobe Techniques, 21, 351–361.CrossRefGoogle Scholar
  8. Dogru, M., Guven, R. G., & Erdoǧan, S. (2007). The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Journal of Hazardous Materials, 149, 166–173.CrossRefGoogle Scholar
  9. Duran, C., Gundogdu, A., Bulut, V. N., Soylak, M., Elci, L., Sentürk, H. B. et al. (2007). Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials, 146, 347–355.CrossRefGoogle Scholar
  10. Duran, C., Senturk, H. B., Elci, L., Soylak, M., & Tufekci, M. (2009). Simultaneous preconcentration of Co(II), Ni(II), Cu(II), and Cd(II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. Journal of Hazardous Materials, 162, 292–299.CrossRefGoogle Scholar
  11. Elci, L., Sahan, D., Basaran, A., & Soylak, M. (2007). Solid phase extraction of gold(III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination. Environmental Monitoring and Assessment, 132, 331–338.CrossRefGoogle Scholar
  12. Ensafi, A. A., & Ghaderi, A. R. (2008). Preconcentration, separation and determination of lead(II) with methyl thymol blue adsorbed on activated carbon using flame atomic absorption spectrometry. Journal of the Korean Chemical Society, 52, 16–22.CrossRefGoogle Scholar
  13. Faraji, M., Yamini, Y., & Shariati, S. (2009). Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. Journal of Hazardous Materials, 166, 1383–1388.CrossRefGoogle Scholar
  14. Ganjali, M. R., Pourjavid, M. R., & Babaei, L. H. (2004). Ultra-trace monitoring of copper in environmental and biological samples by inductively coupled plasma atomic emission spectrometry after separation and preconcentration by using octadecyl silica membrane disks modified by a new Schiff’s base. Quimica Nova, 27, 213–217.Google Scholar
  15. Hashemi, O. R., Kargar, M. R., Raoufi, F., Moghimi, A., Aghabozorg, H., & Ganjali, M. R. (2001). Separation and preconcentration of trace amounts of lead on octadecyl silica membrane disks modified with a new S-containing Schiff’s base and its determination by flame atomic absorption spectrometry. Microchemical Journal, 69, 1–6.CrossRefGoogle Scholar
  16. He, C., Long, Y., Pan, J., Li, K., & Liu, F. (2007). Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. Journal of Biochemical and Biophysical Methods, 70, 133–150.CrossRefGoogle Scholar
  17. Jain, V. K., Sait, S. S., Shrivastav, P., & Agrawal, Y. K. (1997). Application of chelate forming resin Amberlite XAD-2-o-vanilinthiosemicarbazone to the separation and preconcentration of copper(II), zinc(II) and lead(II). Talanta, 45, 397–404.CrossRefGoogle Scholar
  18. Kara, H., Ayyildiz, H. F., & Topkafa, M. (2008). Use of aminoprophyl silica-immobilized humic acid for Cu(II) ions removal from aqueous solution by using a continuously monitored solid phase extraction technique in a column arrangement. Colloids and Surfaces, A, 312, 62–72.CrossRefGoogle Scholar
  19. Kara, D., Fisher, A., & Hill, S. J. (2009). Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. Journal of Hazardous Materials, 165, 1165–1169.CrossRefGoogle Scholar
  20. Khorrami, A. R., Naeimi, H., & Fakhari, A. R. (2004). Determination of nickel in natural waters by FAAS after sorption on octadecyl silica membrane disks modified with a recently synthesized Schiff’s base. Talanta, 64, 13–17.CrossRefGoogle Scholar
  21. Kim, Y.-S., In, G., & Choi, J. M. (2006). Solid phase extraction of trace Cu(II), Mn(II), Pb(II) and Zn(II) in water samples with pulverized silica-salen (NEt2)2. Bulletin of the Korean Chemical Society, 27, 1557–1561.CrossRefGoogle Scholar
  22. Kim, Y.-S., In, G., Han, C.-W., & Choi, J.-M. (2005). Studies on synthesis and application of XAD-4-salen chelate resin for separation and determination of trace elements by solid phase extraction. Microchemical Journal, 80, 151–157.CrossRefGoogle Scholar
  23. Lemos, V. A., Bezerra, M. A., & Amorim, F. A. C. (2008a). On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry. Journal of Hazardous Materials, 157, 613–619.CrossRefGoogle Scholar
  24. Lemos, V. A., Novaes, C. G., & Lima, A. S. (2008b). D.R. Vieira, Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples. Journal of Hazardous Materials, 155, 128–134.CrossRefGoogle Scholar
  25. Liang, P., & Sang, H. (2008). Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 380, 21–25.CrossRefGoogle Scholar
  26. Mashhadizadeh, M. H., Pesteh, M., Talakesh, M., Sheikhshoaie, I., Ardakani, M. M., & Karimi, M. A. (2008). Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry. Spectrochimica Acta, Part B, 63, 885–888.CrossRefGoogle Scholar
  27. Melek, E., Tuzen, M., & Soylak, M. (2006). Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493. Analytica Chimica Acta, 578, 213–219.CrossRefGoogle Scholar
  28. Mohammadhosseini, M., & Tehrani, M. S. (2006). Solid phase extraction and determination of trace amounts of lead(II) using octadecyl membrane disks modified by a new Schiff’s base and flame atomic absorption spectrometry. Journal of the Chinese Chemical Society, 53, 1119–1128.Google Scholar
  29. Prabhakaran, D., & Subramanian, M. S. (2004). Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin. Analytical and Bioanalytical Chemistry, 379, 519–525.CrossRefGoogle Scholar
  30. Quanmin, L., XiaoHong, Z., Kai, J., & GuoGuang, L. (2007). Study of spectrophotometric method for determination of trace copper after the separation and enrichment with solid phase extractant-microcrystalline phenolphthalein. Chinese Science Bulletin, 52, 65–70.CrossRefGoogle Scholar
  31. Rajesh, N., Jalan, R. K., & Hotwany, P. (2008). Solid phase extraction of chromium (VI) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column. Journal of Hazardous Materials, 150, 723–727.CrossRefGoogle Scholar
  32. Shamsipur, M., Ghiasvand, A. R., Sharghi, H., & Naeimi, H. (2000). Solid phase extraction of ultra trace copper(II) using octadecyl silica membrane disks modified by a naphthol-derivative Schiff’s base. Analytica Chimica Acta, 408, 271–277.CrossRefGoogle Scholar
  33. Shamsipur, M., Saeidi, M., Yari, A., Yaganeh-Faal, A., Mashhadizadeh, M. H., Azimi, G., et al. (2004). UO\(_{2}^{2+}\) ion-selective membrane electrode based on a naphthol-derivative Schiff’s base 2,2-[1,2-ethandiyl bis(nitriloethylidene)]bis(1-naphthalene). Bulletin of the Korean Chemical Society, 25, 629–633.CrossRefGoogle Scholar
  34. Shemirani, F., Alsadat, A., Masood, M., Niasari, S., & Kozani, R. R. (2004). Silica gel coated with Schiff’s base: Synthesis and application as an adsorbent for cadmium, copper, zinc, and nickel determination after preconcentration by flame atomic absorption spectrometry. Journal of Analytical Chemistry, 59, 228–233.CrossRefGoogle Scholar
  35. Tsogas, G. Z., Giokas, D. L., & Vlessidis, A. G. (2009). Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: Study of preconcentration technique performance. Journal of Hazardous Materials, 163, 988–994.CrossRefGoogle Scholar
  36. Tuzen, M., Citak, D., & Soylak, M. (2008). 5-Chloro-2-hydroxyaniline–copper(II) coprecipitation system for preconcentration and separation of lead(II) and chromium(III) at trace levels. Journal of Hazardous Materials, 158, 137–141.CrossRefGoogle Scholar
  37. Tuzen, M., & Soylak, M. (2009). Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 162, 724–729.CrossRefGoogle Scholar
  38. Venkatesh, G., & Singh, A. K. (2007). 4-{[(2-Hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) anchored Amberlite XAD-16: Preparation and applications as metal extractants. Talanta, 71, 282–287.CrossRefGoogle Scholar
  39. Walas, S., Tobiasz, A., Gawin, M., Trzewik, B., Strojny, M., & Mrowiec, H. (2008). Application of a metal ion-imprinted polymer based on salen–Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta, 76, 96–101.CrossRefGoogle Scholar
  40. Yamini, Y., Faraji, M., Shariati, S., Hassani, R., & Ghanbarian, M. (2008). On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples. Analytica Chimica Acta, 612, 144–151.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Art and ScienceOndokuz Mayıs UniversityKurupelitTurkey

Personalised recommendations