Advertisement

Environmental Monitoring and Assessment

, Volume 173, Issue 1–4, pp 625–641 | Cite as

Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques

  • Hafizan JuahirEmail author
  • Sharifuddin M. Zain
  • Mohd Kamil Yusoff
  • T. I. Tengku Hanidza
  • A. S. Mohd Armi
  • Mohd Ekhwan Toriman
  • Mazlin Mokhtar
Open Access
Article

Abstract

This study investigates the spatial water quality pattern of seven stations located along the main Langat River. Environmetric methods, namely, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA), and the factor analysis (FA), were used to study the spatial variations of the most significant water quality variables and to determine the origin of pollution sources. Twenty-three water quality parameters were initially selected and analyzed. Three spatial clusters were formed based on HACA. These clusters are designated as downstream of Langat river, middle stream of Langat river, and upstream of Langat River regions. Forward and backward stepwise DA managed to discriminate six and seven water quality variables, respectively, from the original 23 variables. PCA and FA (varimax functionality) were used to investigate the origin of each water quality variable due to land use activities based on the three clustered regions. Seven principal components (PCs) were obtained with 81% total variation for the high-pollution source (HPS) region, while six PCs with 71% and 79% total variances were obtained for the moderate-pollution source (MPS) and low-pollution source (LPS) regions, respectively. The pollution sources for the HPS and MPS are of anthropogenic sources (industrial, municipal waste, and agricultural runoff). For the LPS region, the domestic and agricultural runoffs are the main sources of pollution. From this study, we can conclude that the application of environmetric methods can reveal meaningful information on the spatial variability of a large and complex river water quality data.

Keywords

Environmetric Water quality Cluster analysis Discriminant analysis Principal component analysis Factor analysis 

References

  1. Adams, M. J. (1998). The principles of multivariate data analysis. In P. R. Ashurst & M. J. Dennis (Eds.), Analytical methods of food authentication (p. 350). London: Blackie Academic & Professional.Google Scholar
  2. Aiken, R. S., Leigh, C. H., Leinbach, T. R., & Moss, M. R. (1982). Development and environment in Peninsular Malaysia. Singapore: McGraw-Hill International Book Company.Google Scholar
  3. Alberto, W. D., Pilar, D. M. D., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., et al. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Squia River Basin (Cordoba-Argentina). Water Research, 35, 2881–2894. doi: 10.1016/S0043-1354(00)00592-3.CrossRefGoogle Scholar
  4. Arheimer, P. V., & Swank, W. T. (2000). Nitrogen and phosphorus concentrations from agriculture catchments—Influence of spatial and temporal variables. Journal of Hydrology (Amsterdam), 227(1–4), 140–159. doi: 10.1016/S0022-1694(99)00177-8.CrossRefGoogle Scholar
  5. Barnes, I., Kistler, R. W., Mariner, R. H., & Presser, T. H. (1981). Geochemical evidence on the nature of the basement rocks of the Sierra Nevada, California. U.S. Geological Survey Water Supply Paper, 2181.Google Scholar
  6. Bolstad, P. V., & Swank, W. T. (1997). Cumulative impacts of land use on water quality in a southern Appalachian watershed. Journal of the American Water Resources Association, 33(2), 519–534. doi: 10.1111/j.1752-1688.1997.tb03529.x.CrossRefGoogle Scholar
  7. Brodnjak-Voncina, D., Dobcnik, D., Novic, M., & Zupan, J. (2002). Chemometrics characterization of the quality of river water. Analytica Chimica Acta, 462, 87–100. doi: 10.1016/S0003-2670(02)00298-2.CrossRefGoogle Scholar
  8. Brown, S. D., Blank, T. B., Sum, S. T., & Weyer, L. G. (1994). Chemometrics. Analytical Chemistry, 66, 315R–359R. doi: 10.1021/ac00084a014.CrossRefGoogle Scholar
  9. Brown, S. D., Skogerboe, R. K., & Kowalski, B. R. (1980). Pattern recognition assessment of water quality data: Coal strip mine drainage. Chemosphere, 9, 265–276. doi: 10.1016/0045-6535(80)90003-X.CrossRefGoogle Scholar
  10. Brown, S. D., Sum, S. T., & Despagne, F. (1996). Chemometrics. Analytical Chemistry, 68, 21R–61R. doi: 10.1021/a1960005x.CrossRefGoogle Scholar
  11. Buck, O., Niyogi, D. K., & Townsend, C. R. (2003). Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution, 130, 287–299. doi: 10.1016/j.envpol.2003.10.018.CrossRefGoogle Scholar
  12. Chapman, D. (UNESCO, WHO, and UNEP) (1992). Water quality assessment. London: Chapman & Hall.CrossRefGoogle Scholar
  13. Dahlgren, R. A., & Singer, M. J. (1994). Nutrient cycling in managed and non-managed oak woodland–grass ecosystems. Land, Air and Water Resources Research Paper 100028, University of California, Davis, CA.Google Scholar
  14. Department of Environment Malaysia (DOE) (1997). Malaysia environmental quality reports, 1999. Kuala Lumpur: Ministry of Science, Technology and Environment.Google Scholar
  15. Department of Environment Malaysia (DOE) (1999). Malaysia environmental quality reports, 1999. Kuala Lumpur: Ministry of Science, Technology and Environment.Google Scholar
  16. Department of Irrigation and Drainage (DID) (2001). DID annual report. Kuala Lumpur.Google Scholar
  17. Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30, 1935–1948. doi: 10.1016/0043-1354(96)00087-5.CrossRefGoogle Scholar
  18. Fisher, D. S., Steiner, J. L., Endale, D. M., Stuedemann, J. A., Schomberg, H. H., & Wilkinson, S. R. (2000). The relationship of land use practices to surface water quality in the Upper Oconee Watershed of Georgia. Forest Ecology and Management, 128, 39–48. doi: 10.1016/S0378-1127(99)00270-4.CrossRefGoogle Scholar
  19. Forina, M., Armanino, C., & Raggio, V. (2002). Clustering with dendograms on interpretation variables. Analytica Chimica Acta, 454, 13–19. doi: 10.1016/S0003-2670(01)01517-3.CrossRefGoogle Scholar
  20. Frenzel, S. A., & Couvillion, C. S. (2002). Fecal-indicator bacteria in streams along gradient of residential development. Journal of the American Water Resources Association, 38, 265–273. doi: 10.1111/j.1752-1688.2002.tb01550.x.CrossRefGoogle Scholar
  21. Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Journal of Environmental Management, 74, 31–42.Google Scholar
  22. Ha, S. R., & Bae, M.-S. (2001). Effects of land use and municipal wastewater treatment changes on stream water quality. Water, Air, and Soil Pollution, 70, 135–151.Google Scholar
  23. Hashim, D. (2001). Water pollution control in Malaysia—A regulator’s perspective. Paper Presented in the Seminar on World Day for Water, 23–24 March 2001, Batu Pahat, Johor.Google Scholar
  24. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evaluation of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34, 807–816. doi: 10.1016/S0043-1354(99)00225-0.CrossRefGoogle Scholar
  25. Hill, A. R. (1978). Factors affecting the export of nitrate-nitrogen from drainage basins in southern Ontario. Water Research, 12, 1045–1057. doi: 10.1016/0043-1354(78)90050-7.CrossRefGoogle Scholar
  26. Hill, A. R. (1981). Stream phosphorus exports from watersheds with contrasting land uses in southern Ontario. Water Resources Bulletin, 17(3), 627–634.Google Scholar
  27. Holloway, J. M., & Dahlgren, R. A. (2001). Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. Journal of Hydrology (Amsterdam), 250, 106–121. doi: 10.1016/S0022-1694(01)00424-3.CrossRefGoogle Scholar
  28. Idris, A., Mamun, A. A., Mohd, A. M. S., & Wan, N. A. S. (2003). Review of water quality standards and practices in Malaysia. Pollution Research, 22(1), 145–155.Google Scholar
  29. Johnson, L. B., & Gage, S. H. (1997). Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology, 37, 113–132. doi: 10.1046/j.1365-2427.1997.00156.x.Google Scholar
  30. Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (3rd ed.). Prentice-Hall Int.: New Jersey.Google Scholar
  31. Juahir, H., Ekhwan, T. M., Zain, S. M., Mokhtar, M., Zaihan, J., & Ijan Khushaida, M. J. (2008). The use of chemometrics analysis as a cost-effective tool in sustainable utilisation of water resources in the Langat River Catchment. American-Eurasian Journal of Agricultural & Environmental Sciences, 4(1), 258–265.Google Scholar
  32. Juahir, H., Sharifuddin, M., Zain, M., Toriman, E., & Mokhtar, M. (2004). Use of artificial neural network in the prediction of water quality index of Langat River Basin. Malaysia. Jurnal Kejuruteraan Awam, 16(22), 42–55.Google Scholar
  33. Kannel, P. R., Lee, S., Kanel, S. R., & Khan, S. P. (2007). Chemometric application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582, 390–399. doi: 10.1016/j.aca.2006.09.006.CrossRefGoogle Scholar
  34. Kim, J.-O., & Mueller, C. W. (1987). Introduction to factor analysis: What it is and how to do it. Quantitative applications in the social sciences series. Newbury Park: Sage University Press.Google Scholar
  35. Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river classification. Water Research, 40, 744. doi: 10.1016/j.watres.2005.11.042.CrossRefGoogle Scholar
  36. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89. doi: 10.1016/S0048-9697(02)00683-6.CrossRefGoogle Scholar
  37. Massart, D. L., & Kaufman, L. (1983). The interpretation of analytical data by the use of cluster analysis. New York: Wiley.Google Scholar
  38. Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1997). Handbook of chemometrics and qualimetrics: Data handling in science and technology (Parts A and B, Vols. 20A and 20B). Elsevier: Amsterdam.Google Scholar
  39. McFarland, A. M., & Hauck, S. L. (1999). Relating agricultural land uses to in-stream stormwater quality. Journal of Environmental Quality, 28(2), 836–844.CrossRefGoogle Scholar
  40. McKenna, J. E., Jr. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling & Software, 18(2), 205–220. doi: 10.1016/S1364-8152(02)00094-4.CrossRefGoogle Scholar
  41. Neill, M. (1989). Nitrate concentrations in river waters in the south-east of Ireland and their relationship with agricultural practice. Water Research, 23, 1339–1355. doi: 10.1016/0043-1354(89)90073-0.CrossRefGoogle Scholar
  42. Osborne, L. L., & Wiley, M. J. (1988). Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management, 26, 9–27.Google Scholar
  43. Otto, M. (1998). Multivariate methods. In R. Kellner, J. M. Mermet, M. Otto, & H. M. Widmer (Eds.), Analytical chemistry. Wenheim: Wiley-VCH.Google Scholar
  44. Qadir, A., Malik, R. N., & Husain, S. Z. (2007). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring Assessment, 140, 43–59.CrossRefGoogle Scholar
  45. Reghunath, R., Murthy, S. T. R., & Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36, 2437–2442. doi: 10.1016/S0043-1354(01)00490-0.CrossRefGoogle Scholar
  46. Rosnani, I. (2001). River water quality status in Malaysia. In Proceedings national conference on sustainable river basin management in Malaysia, 13–14 November 2000, Kuala Lumpur, Malaysia.Google Scholar
  47. Schlosser, I. J., & Karr, J. R. (1981). Water quality in agricultural watersheds: Impact of riparian vegetation during base flow. Water Resources Bulletin, 17, 233–240.Google Scholar
  48. Shah, A. H. H., Hadi, A. S., & Jahi J. M. (2002). Lembangan Langat Sebagai Pentas Kehidupan. In M. Mokhtar, Shaharudin Idrus, Ahmad Fariz Mohamed, Abdul Hadi Harman Shah, & Sarah Aziz (Eds.), Langat Basin research symposium 2001. Proceedings of the 2001 Langat Basin research symposium (pp. 9–20). Institut Alam Sekitar dan Pembangunan (LESTARI).Google Scholar
  49. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475. doi: 10.1016/j.envsoft.2006.02.001.CrossRefGoogle Scholar
  50. Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Envirometric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905. doi: 10.1007/s00216-002-1559-5.CrossRefGoogle Scholar
  51. Simeonov, V., Stefanov, S., & Tsakovski, S. (2000). Environmetrical treatment of water quality survey data from Yantra River, Bulgaria. Mikrochimica Acta, 134, 15–21. doi: 10.1007/s006040070047.CrossRefGoogle Scholar
  52. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124. doi: 10.1016/S0043-1354(03)00398-1.CrossRefGoogle Scholar
  53. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992. doi: 10.1016/j.watres.2004.06.011.CrossRefGoogle Scholar
  54. Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta, 35, 3581–3592.Google Scholar
  55. Siwar, C., Shah, A. H. H., Hadi, A. S., Mohamed, A. F., & Idrus, S. (2004). Socioeconomic status and transformation of households in Langat Basin. In M. Mokhtar, Shaharudin Idrus & Sarah Aziz (Eds.), Ecosystem health of the Langat Basin. Proceedings of the 2003 research symposium on ecosystem of The Langat Basin (pp. 23–43). Institut Alam Sekitar dan Pembangunan (LESTARI).Google Scholar
  56. Tufford, D. L., McKellar, H. N., & Hussey, J. R. (1998). In-stream non-point source nutrient predictions with land-use proximity and seasonality. Journal of Environmental Quality, 27, 100–111.CrossRefGoogle Scholar
  57. Universiti Malaya Consultancy Unit (UPUM) (2002). Final report program Pencegahan dan Peningkatan Kualiti Air Sungai Langat. Kuala Lumpur.Google Scholar
  58. U.S. Geological Survey (USGS) (1999). The quality of our nation’s waters-nutrients and pesticides. U.S. Geological Survey Circular 1225.Google Scholar
  59. U.S. Geological Survey (USGS) (2007). Water quality in the Upper Anacostia River, Maryland: Continuous and discrete monitoring with simulations to estimate concentrations and yields, 2003–05. Scientific Investigations Report 2007-5142, USGS, Virginia.Google Scholar
  60. Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581–3592. doi: 10.1016/S0043-1354(98)00138-9.CrossRefGoogle Scholar
  61. Wahl, M. H., McKellar, H. N., & Williams, T. M. (1997). Patterns of nutrient loading in forested and urbanized coastal streams. Journal of Experimental Marine Biology and Ecology, 213, 111–131. doi: 10.1016/S0022-0981(97)00012-9.CrossRefGoogle Scholar
  62. Willet, P. (1987). Similarity and clustering in chemical information systems. New York: Research Studies Press, Wiley.Google Scholar
  63. Yusoff, M. K., & Haron, A. R. (1999). Water quality status of Air Hitam forest reserve. Pertanika Journal of Tropical Agricultural Science, 22(1), 127–129.Google Scholar
  64. Yusoff, M. K., Ramli, M. F., Juahir, H., Mustapha, S., Ismail, M. R., Mat Perak, Z., et al. (2006). Relationship between suspended solids and turbidity of river in forested catchment. Malayan Forester, 69(1), 155–162.Google Scholar
  65. Zampella, R. A. (1995). Characterization of surface water quality along a watershed disturbance gradient. Water Resources Bulletin, 30, 605–611.Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Hafizan Juahir
    • 1
    Email author
  • Sharifuddin M. Zain
    • 2
  • Mohd Kamil Yusoff
    • 1
  • T. I. Tengku Hanidza
    • 1
  • A. S. Mohd Armi
    • 1
  • Mohd Ekhwan Toriman
    • 3
  • Mazlin Mokhtar
    • 4
  1. 1.Department of Environmental Science, Faculty of Environmental StudiesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.School of Social Development and Environmental StudiesUniversiti Kebangsaan MalaysiaBangiMalaysia
  4. 4.Institute of Environment and Development (LESTARI)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations