Advertisement

Environmental Monitoring and Assessment

, Volume 172, Issue 1–4, pp 529–545 | Cite as

Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India

  • Amrita Malik
  • Priyanka Verma
  • Arun K. Singh
  • Kunwar P. SinghEmail author
Article

Abstract

The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 μg/L (average (n = 48), 10.33 ± 19.94 μg/L) and 5.24–3,722.87 ng/g dw [average (n = 48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.

Keywords

Polycyclic aromatic hydrocarbons Biological threshold Source apportionment River pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, T., Khillare, P. S., & Shridhar, V. (2006). PAHs contamination in bank sediment of the Yamuna river, Delhi, India. Environmental Monitoring and Assessment, 123, 151–166.CrossRefGoogle Scholar
  2. Ahmad, S., Ajmal, M., & Nomani, A. A. (1996). Organochlorines and polycyclic aromatic hydrocarbons in the sediments of Ganges river (India). Bulletin of Environmental Contamination and Toxicology, 57, 794–802.CrossRefGoogle Scholar
  3. ATSDR (1995). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Agency for Toxic Substances and Disease Registry (ATSDR). Atlanta: US Department of Health and Human Services, Public Health Service.Google Scholar
  4. Bin, J., Hai-long, Z., Guo-qiang, H., Hui, D., Xin-gang, L. I., Hong-tu, S., et al. (2007). Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin, China. Journal of Environmental Science, 19, 306–311.CrossRefGoogle Scholar
  5. BIS (1982). Indian standards: Tolerance limits for inland surface waters subject to pollution (2296–1982). New Delhi: IS.Google Scholar
  6. Chen, Y., Zhu, L., & Zhou, R. (2007). Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. Journal of Hazardous Materials, 141, 148–155.CrossRefGoogle Scholar
  7. Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34, 4635–4640.CrossRefGoogle Scholar
  8. Dodder, N. G., Strandberg, B., Augspurger, T., & Hites, R. A. (2003). Lipophilic organic compounds in lake sediment and American coot (Fulica americana) tissues, both affected and unaffected by avian vascular myelinopathy. Science of the Total Environment, 311, 81–89.CrossRefGoogle Scholar
  9. Doong, R., & Lin, Y. (2004). Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 38, 1733–1744.CrossRefGoogle Scholar
  10. Fernandes, M. B., Sicre, M. A., Boireau, A., & Tronczynski, J. (1997). Hydrocarbon (PAH) distributions in the Seine River and its estuary. Marine Pollution Bulletin, 34, 857–867.CrossRefGoogle Scholar
  11. Fernandez, P., Vilanova, R. M., & Grimalt, J. O. (1999). Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude Mountain lakes. Environmental Science and Technology, 33, 3716–3722.CrossRefGoogle Scholar
  12. Fraser, M. P., Cass, G. R., Simoneit, B. R., & Rasmussen, R. A. (1998). Air quality model evaluation data for organics.5.C6-C22 nonpolar and semipolar aromatic compounds. Environmental Science and Technology, 32, 760–1770.CrossRefGoogle Scholar
  13. Gigliotti, C. L., Brunciak, P. A., Dachs, J., Glenn, T. R. IV, Nelson, E. D., Totten, L. A., et al. (2002). Air–water exchange of polycyclic aromatic hydrocarbons in the New York–New Jersey, USA, harbor estuary. Environmental Toxicology and Chemistry, 21, 235–244.Google Scholar
  14. Gschwend, P., & Hites, R. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the north-eastern United States. Geochimica et Cosmochimica Acta, 45, 2359–2367.CrossRefGoogle Scholar
  15. Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30, 825–832.CrossRefGoogle Scholar
  16. Ho, K. F., Lee, S. C., & Chiu, G. M. Y. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36, 57–65.CrossRefGoogle Scholar
  17. Huang, J., Zhang, Z., & Yu, G. (2003). Occurrence of dissolved PAHs in Jinsha River (Panzhihua) – upper reaches of Yangtze River, Southwest China. Journal of Environmental Monitoring, 5, 604–609.CrossRefGoogle Scholar
  18. International Agency for Research on Cancer (IARC) (1987). Overall evaluation of carcinogenecity: An updating of IARC monographs. IARC monographs on the evaluation of carcinogenic risk to humans (Vol. 1–42). Supplement, France.Google Scholar
  19. Kannan, G. K., & Kapoor, S. C. (2004). Analysis of particles size fraction (PM10 and PM2.5) and PAH of urban ambient air. DRDO, Ministry of Defence, Delhi 110054, India.Google Scholar
  20. Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.CrossRefGoogle Scholar
  21. Khim, J. S., Kannan, K., Villeneuve, D. L., Koh, C. H., & Giesy, J. P. (1999). Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental analysis. Environmental Science and Technology, 33, 4199–4205.CrossRefGoogle Scholar
  22. Laflamme, R. E., & Hites, R. A. (1978). The global distribution of PAHin recentsediments. Geochimica et Cosmochimica Acta, 42, 289–303.CrossRefGoogle Scholar
  23. Lake, J. L., Norwood, C., Dimock, C., & Bowen, R. (1979). Origins of polycyclic aromatic hydrocarbons in estuarine sediments. Geochimica et Cosmochimica Acta, 43, 1847–1854.CrossRefGoogle Scholar
  24. Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.CrossRefGoogle Scholar
  25. Lee, M. L., Prado, G. P., Howard, J. B., & Hates, R. A. (1977). Source identification of urban airborne polycyclic aromatic hydrocarbons by gas chromatography–mass spectrometry and high resolution mass spectrometry. Biomedical Mass Spectrometry, 4, 182–186.CrossRefGoogle Scholar
  26. Li, C. K., & Kamens, R. M. P. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment, 27A, 523–532.Google Scholar
  27. Liu, Y., Chen, L., Jianfu, Z., Qinghui, H., Zhiliang, Z., Hongwen, G. (2008). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environmental Pollution, 154, 298–305.CrossRefGoogle Scholar
  28. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.CrossRefGoogle Scholar
  29. Macias-Zamora, J. V., Mendoza-Vega, E., & Villaescusa-Celaya, J. A. (2002). PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, BC, Mexico. Chemosphere, 46, 459–468.CrossRefGoogle Scholar
  30. Mai, B., Fu, J., Sheng, G., Kang, Y., Lin, Z., Zhang, G., et al. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117, 457–474.CrossRefGoogle Scholar
  31. Maldonado, C., Bayona, J. M., & Bodineau, L. (1999). Sources, distribution, and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the northwestern Black Sea water. Environmental Science and Technology, 33, 2693–2702.CrossRefGoogle Scholar
  32. Malik, A., Ojha, P., & Singh, K. P. (2008). Distribution of polycyclic aromatic hydrocarbons in edible fish from Gomti River, India. Bulletin of Environmental Contamination and Toxicology, 80, 134–138.CrossRefGoogle Scholar
  33. Malik, A., Singh, K. P., Mohan, D., & Patel, D. K. (2004). Distribution of polycyclic aromatic hydrocarbons in Gomti river system, India. Bulletin of Environmental Contamination and Toxicology, 72, 1211–1218.CrossRefGoogle Scholar
  34. Masih, A., & Taneja, A. (2006). Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere, 65, 449–456.CrossRefGoogle Scholar
  35. Mastral, A. M., Callen, M., & Murillo, R. (1996). Assessment of PAH emissions as a function of coal combustion variables. Fuel, 75, 1533–1536.CrossRefGoogle Scholar
  36. McKenize-Smith, K., Tiller, D., & Allen, D. (1994). Organochlorine pesticide residues in water and sediments from the Ovens and King rivers, north-east Victoria,Australia. Archives of Environmental Contamination and Toxicology, 26, 390–483.Google Scholar
  37. McVeety, B. D., & Hites, R. A. (1988). Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach. Atmospheric Environment, 22, 511–536.CrossRefGoogle Scholar
  38. Mitra, S., & Bianchi, T. S. (2003). A preliminary assessment of polycyclic aromatic hydrocarbon distributions on the lower Mississippi River and Gulf of Mexico. Marine Chemistry, 82, 273–288.CrossRefGoogle Scholar
  39. Naes, K., Oug, E., & Knutzen, J. (1998). Source and species-dependent accumulation of polycyclic aromatic hydrocarbons (PAHs) in littoral indicator organisms from Norwegian smelter-affected marine waters. Marine Environmental Research, 45, 193–207.CrossRefGoogle Scholar
  40. NIST (1985). Certificate of Analysis. Standard Reference Material 1650. Diesel particulate matter, National Institute of Standards and Technology.Google Scholar
  41. Prahl, F. G., Crecellus, E., & Carpenter, R. (1984). Polycyclic aromatic hydrocarbons in washigton coastal sediments: An evaluation of atmospheric and riverine routes of introduction. Environmental Science and Technology, 18, 687–693.CrossRefGoogle Scholar
  42. Raiyani, C. V., & Shah, J. A. (1993). Levels of PAHs in ambient environment of Ahmedabad city. Indian Journal of Environmental Protection, 13, 206–215.Google Scholar
  43. Readman, J. W., Mantoura, R. F. C., & Rhead, M. M. (1987). A record of polycyclic aromatic hydrocarbon (PAH) pollution obtained from accreting sediments of the Tamar estuary, UK: Evidence for nonequilibrium behaviour of PAH. Science of the Total Environment, 66, 73–94.CrossRefGoogle Scholar
  44. Sahu, S. K., Pandit, G. G., & Sharma, S. (2001). Levels of PAHs in ambient air of Mumbai. In: Proceedings of 10th national symposium on environment, BAD, BARC, Mumbai, 4–6 June, pp. 279–281.Google Scholar
  45. Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmopheric Environment, 30, 3837–3855.CrossRefGoogle Scholar
  46. Shaw, M., Tibbetts, I. R., & Muller, J. F. (2004). Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis. Chemosphere, 56, 237–246.CrossRefGoogle Scholar
  47. Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., et al. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134, 97–111.CrossRefGoogle Scholar
  48. Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079.CrossRefGoogle Scholar
  49. Simo, R., Grimalt, J. O., & Albaijes, J. (1997). Loss of unburned-fuel hydrocarbons from combustion aerosols during atmospheric transport. Environmental Science and Technology, 31, 2697–2700.CrossRefGoogle Scholar
  50. Simoneit, B. R. T. (1984). Organic matter of the trophosphere-III: Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmospheric Environment, 18, 51–67.CrossRefGoogle Scholar
  51. Simpson, C. D., Mosi, A. A., Cullen, W. R., & Reimer, K. J. (1996). Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada[J]. Science of the Total Environment, 181, 265–278.CrossRefGoogle Scholar
  52. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992.CrossRefGoogle Scholar
  53. Reddy, S., Basha, S., Joshi, H. V., & Ramachandraiah, G. (2005). Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemos, 61, 1587–1593.CrossRefGoogle Scholar
  54. Tabak, H. H., Lazorchak, J. M., Khodadoust, A. P., Antia, J. E., Bagchi, R., & Suidan, M. T. (2003). Studies on bioremeadiation of polycyclic aromatic hydrocarbon-contaminated sediments: Bioavailability, biodegradability, and toxicity issues. Environmental Toxicology and Chemistry, 22, 473–482.CrossRefGoogle Scholar
  55. Tauler, R., Lacorte, S., Guillamon, M., Cespeded, R., Viana, P., & Barcelo, D. (2004). Chemometric modeling of main contamination sources in surface waters of Portugal. Environmental Toxicology and Chemistry, 23, 565–575.CrossRefGoogle Scholar
  56. Tolosa, J., Bayona, J. M., & Albaige’s, J. (1996). Alphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments: Spatial and temporal variability, fluxes, and budgets. Environmental Science and Technology, 30, 2495–2503.CrossRefGoogle Scholar
  57. UN-ECE (1999). Strategies and Policies for Air Pollution Abatement, ECE/EB AIR/65. Major review prepared under the Convention on Long-range Transboundary Air Pollution (p. 144). New York: United Nations.Google Scholar
  58. Wakeham, S. G., Schaffner, C., & Giger, W. (1980). Polycyclic aromatichydrocarbons in recent lake-sediments. 1. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta, 44, 403–413.CrossRefGoogle Scholar
  59. Walkely, A., & Black, I. A. (1934). An examination of the Degthreff method for determining organic matter and a proposed modification of the chromic acid titration method. Soil Science, 27, 29–38.CrossRefGoogle Scholar
  60. Wania, F., & Mackay, D. (1996). Tracking the distribution of persistent organic pollutants. Environmental Science and Technology, 30, 390A–396A.Google Scholar
  61. Wang, J. Z., Nie, Y. F., Luo, X. L. & Zeng, E. Y. (2008). Yellow River occurrence and phase distribution of polycyclic aromatic hydrocarbons in riverine runoff of the Pearl Delta, China. Marine Pollution Bulletin, 57, 767–774.CrossRefGoogle Scholar
  62. Watanabe, K. H., Desimone, F. W., Thiyagarajah, A., Hartley, W. R., & Hindrichs, A. E. (2003). Fish tissue quality in the lower Mississippi river and health risks from fish consumption. Science of the Total Environment, 302, 109–126.CrossRefGoogle Scholar
  63. Yim, U. H., Hong, S. H., Shim, W. J., Oh, J. R., & Chang, M. (2005). Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea. Marine Pollution Bulletin, 50, 319–326.CrossRefGoogle Scholar
  64. Yunker, M. B., Snoedon, L. R., Macdoland, R. W., Smith, J. N., Fowler, M. G., Malaughlin, F. A., et al. (1996). Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas. Environmental Science and Technology, 30, 1310–1320.CrossRefGoogle Scholar
  65. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.CrossRefGoogle Scholar
  66. Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environmental Science and Technology, 36, 1907–1918.CrossRefGoogle Scholar
  67. Zamora, M. J. V., Vega, M. V., & Celaya, J. A. V. (2002). PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, B.C., Mexico. Chemosphere, 46, 459–469.CrossRefGoogle Scholar
  68. Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., & Liu, Z. S. (2005). Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environmental Science and Technology, 39, 9109–9114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Amrita Malik
    • 1
  • Priyanka Verma
    • 1
  • Arun K. Singh
    • 1
  • Kunwar P. Singh
    • 1
    Email author
  1. 1.Environmental Chemistry Division, Indian Institute of Toxicology Research (Council of Scientific & Industrial Research)Mahatma Gandhi MargIndia

Personalised recommendations