Environmental Monitoring and Assessment

, Volume 172, Issue 1–4, pp 493–505 | Cite as

Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management

  • Nancy ArandaCirerol
  • Francisco Comín
  • Jorge Herrera-Silveira
Article

Abstract

Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

Keywords

Groundwater Eutrophication Nitrogen Yucatán aquifer Water management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1983). Evapotranspiration chart and water deficit. Mérida chart. (Carta de evapotranspiración y déficit de agua. Hoja Mérida). Secretaría de Programación y Presupuesto,. Scale, 1:1.000.000.Google Scholar
  2. Anonymous (1998). Cattle farming economic information (Información Económica Pecuaria No. 7). México: Confederación Nacional Ganadera.Google Scholar
  3. ArandaCirerol, N. (2001). Alimentando al mundo, envenenando al planeta: Eutrofización y calidad de agua. Avance y Perspectiva, 20, 293–303.Google Scholar
  4. ArandaCirerol, N. (2004). Eutrofización y calidad del agua de una zona costera tropical (230 pp.). Ph.D. thesis, Universitat de Barcelona, Spain.Google Scholar
  5. ArandaCirerol, N., Herrera-Silveira, J. A., & Comín, F. A. (2006). Nutrient water quality of a tropical coastal zone with groundwater discharge, northwestern Yucatán, Mexico. Estuarine, Coastal and Shelf Science, 68, 445–454.CrossRefGoogle Scholar
  6. Arheimer, B., Torstensson, G., & Wittgren, H. B. (2003). Landscape planning to reduce coastal eutrophication: Agricultural practices and constructed wetlands. Landscape and Urban Planning, 1019, 1–11.Google Scholar
  7. Back, W., & Lesser, J. M. (1981). Chemical constraints of groundwater management in the Yucatán Peninsula, Mexico. Journal of Hydrology, 10, 330–368.CrossRefGoogle Scholar
  8. Bell, P. R. F. (1991). Status of eutrophication in the Great Barrier Reef Lagoon. Marine Pollution Bulletin, 23, 89–93. doi:10.1016/0025-326X(91)90655-C.CrossRefGoogle Scholar
  9. Boyer, E. W., Goodale, C. L., Jaworski, N. A., & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry, 57/58, 137–169.CrossRefGoogle Scholar
  10. Braga, E., Bonetti, C. V. D. H., Burone, L., & Bonetti Filho, J. (2000). Eutrophication and bacterial pollution caused by industrial and domestic wastes at the baixada santista estuarine system - Brazil. Marine Pollution Bulletin, 40, 165–173.CrossRefGoogle Scholar
  11. Cairns, M. A., Haggerty, P. K., Alvarez, R., De Jong, B. H. J., & Olmsted, I. (2000). Tropical Mexico’s recent land-use change: A region’s contribution to the global carbon cycle. Ecological Applications, 10, 1426–1441.CrossRefGoogle Scholar
  12. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.CrossRefGoogle Scholar
  13. CNA (2000). Registro mensual de precipitación pluvial. Comisión Nacional del Agua. México: Servicio Meteorológico Nacional.Google Scholar
  14. CNA (2001). Volúmenes por uso del agua del Estado de Yucatán. Comisión Nacional del Agua. Gerencia Regional de la Península de Yucatán. Subgerencia Regional Técnica. México: Mérida, Yucatán.Google Scholar
  15. Costanza, R., dArge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  16. Cruzado, A., Velásquez, Z., Pérez, M., Bahamón, N., Grimaldo, N. S., & Ridolfi, F. (2002). Nutrient fluxes from the Ebro River and subsequent across-shelf dispersion. Continental Shelf Research, 22, 239–360.CrossRefGoogle Scholar
  17. de Jonge, V. C., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia, 475/476, 1–19.CrossRefGoogle Scholar
  18. DeKanel, J., & Morse, J. W. (1978). The chemistry of orthophosphate uptake from seawater on to calcite and aragonite. Geochimica et Cosmochimica Acta, 42, 1335–1340.CrossRefGoogle Scholar
  19. FAO (1996). Animal feed resources information system (Sistema de Información de los Recursos del Pienso). Food and Agriculture Organization of the United Nations, Agriculture Department, Animal Production and Health Division.Google Scholar
  20. Foster, S., Ventura, M., & Hirata, R. (1987). Contaminación de las aguas subterráneas: Un enfoque de la situación en América Latina y el Caribe en relación con el suministro de agua potable. OMS/ OPS-HPE/ CEPIS.Google Scholar
  21. González-Herrera, R., Sánchez-y-Pinto, I., & Gamboa-Vargas, J. (2002). Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeology Journal, 10, 539–552.CrossRefGoogle Scholar
  22. Gowen, R. J., Hydes, D. J., Mills, D. K., Stewart, B. M., Brown, J., Gibson, C. E., et al. (2002). Assessing trends in nutrient concentrations in coastal shelf seas: A case study in the Irish Sea. Estuarine, Coastal and Shelf Science, 54, 927–939. doi:10.1006/ecss.2001.0849.CrossRefGoogle Scholar
  23. Graniel, C. E., Morris, L. B., & Carrillo-Rivera, J. J. (1999). Effects of urbanization on groundwater resources of Mérida, Yucatán, México. Environmental Geology, 37, 303–312.CrossRefGoogle Scholar
  24. Hanshaw, B. B., & Back, W. (1980). Chemical mass-wasting of the northern Yucatan Peninsula by groundwater dissolution. Geology, 8, 222–224.CrossRefGoogle Scholar
  25. Hernández-Cornejo, R., & Ruiz-Luna, A. (2000). Development of shrimp farming in the coastal zone of southern Sinaloa (Mexico): Operating characteristics, environmental issues, and perspectives. Ocean & Coastal Management, 43, 597–607.CrossRefGoogle Scholar
  26. Hernández Muñoz, A., Hernández Lehmann, A., & Galán Martínez, P. (1995). Manual de Depuración URALITA. Editorial Paraninfo, S.A.Google Scholar
  27. Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, Z. A., Jacobsen, S. B., et al. (1991). Chicxulub crater: A possible Cretaceous/ Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 19, 867–871.CrossRefGoogle Scholar
  28. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996a). Regional nitrogen budgets and riverine N and P fluxes for the drainage to the North Atlantic Ocean: Natural and human influences. Biogeochemistry, 35, 75–139.CrossRefGoogle Scholar
  29. Howarth, R. W., Jensen, H. S., Marino, R., & Postma, H. (1996b). Transport to and processing of p in near-shore and oceanic waters. In T. Holm (Ed.), Phosphorus in the global environment. Transfers, cycles and management (pp. 323–346). New York: Wiley. SCOPE (Scientific Committee On Problems of the Environment), no. 54.Google Scholar
  30. INEGI (2000). Anuario Estadístico Nacional. Estados Unidos Mexicanos. XII Censo General de Población y Vivienda, 1999. Mexico: Instituto Nacional de Estadística, Geografía e Informática.Google Scholar
  31. INEGI (2001). Anuario Estadístico Nacional. Estados Unidos Mexicanos. XII Censo General de Población y Vivienda, 2000. México: Instituto Nacional de Estadística, Geografía e Informática.Google Scholar
  32. INEGI (2002). Anuario Estadístico del Estado de Yucatán. Edición 2001. México: Instituto Nacional de Estadística, Geografía e Informática.Google Scholar
  33. Jenssen, P. D., Maehlum, T., Roseth, R., Braskerud, B., Syversen, N., Njos, A., et al. (1994). The potential of natural ecosystem self-purifying measures for controlling nutrient inputs. Marine Pollution Bulletin, 29, 420–425.CrossRefGoogle Scholar
  34. Johnes, P. J., & Butterfield, D. (2002). Landscape, regional and global estimates of nitrogen flux from land to sea: Errors and uncertainties. Biogeochemistry, 57/58, 429–476.CrossRefGoogle Scholar
  35. Johnston, A. E. (1994). The role of nitrogen in crop production and losses of nitrate by leaching from agricultural soil. Marine Pollution Bulletin, 29, 414–419.CrossRefGoogle Scholar
  36. Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands (893 pp). Boca Raton: CRC.Google Scholar
  37. Lancelot, C., Martin, J. M., Panin, N., & Zaitsev, Y. T. (2002). The North-western Black Sea: A pilot site to understand the complex interaction between human activities and the coastal environment. Estuarine, Coastal and Shelf Science, 54, 279–283.CrossRefGoogle Scholar
  38. Logan, B. W., Harding, J. L., Ahr, W. M., Williams, J. D., & Snead, R. G. (1969). Late Quaternary carbonate sediments of Yucatan shelf, Mexico. In B. W. Logan (Ed.), Carbonate sediments and reefs, Yucatan Shelf, Mexico; Memoir II (pp. 5–128). Tulsa: American Association Petroleum Geologists.Google Scholar
  39. Nedwell, D. B., Dong, L. F., Sage, A., & Underwood, G. J. C. (2002). Variations of the nutrients loads to the mainland U.K. estuaries: Correlation with catchment areas, urbanization and coastal eutrophication. Estuarine, Coastal and Shelf Science, 54, 951–970.CrossRefGoogle Scholar
  40. Noe, G. B., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the everglades so unique? Ecosystems, 4, 603–624.CrossRefGoogle Scholar
  41. Ojeda, D., & Ojeda, T. (1998). Suelos Cultivados de la República Mexicana. Contenido Medio de Nutrimentos Minerales Aprovechables”, Universidad Autónoma Chapingo, México, 1996. México. In INEGI/Semarnap, Estadísticas del Medio Ambiente, México. Informe de la situación general en materia de equilibrio ecológico y la protección al ambiente, 1995–1996, México.Google Scholar
  42. Olajire, A. A., & Imeokoparia, F. E. (2001). Water quality assessment of Osun River: Studies on inorganic nutrients. Environmental Monitoring and Assessment, 69, 17–28.CrossRefGoogle Scholar
  43. Olivos Ortiz, A. (2000). Nutrientes inorgánicos disueltos en aguas litorales próximas al Mar Catalán (140 pp). Ph.D. thesis, Universitat de Barcelona, Spain.Google Scholar
  44. Pacheco, J., & Cabrera, A. (1997). Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. Hydrogeology Journal, 5, 47–53.CrossRefGoogle Scholar
  45. Pacheco, J., Marín, L., Cabrera, A., Steinich, B., & Escolero, O. (2001). Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environmental Geology, 40, 708–715.CrossRefGoogle Scholar
  46. Padilla Goyo, E. C., Castellanos Ruelas, A. F., Cantón Castillo, J. G., & Moguel Ordoñez, Y. B. (2003). Impacto de los niveles elevados de excretas animals en la alimentación de ovinos (High levels of animal excreta in feed for sheep). Livestock Research of Rural Development 2000, 12 (1) (online edition). Retrieved October 2003 from http://www.cipav.org.co/lrrd/lrrd12/1/cont121.htm.
  47. Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography, 42, 1154–1165.CrossRefGoogle Scholar
  48. Páez-Osuna, F., Gracia, A., Flores-Verdugo, F., Lyle-Fritch, L. P., Alonso-Rodríguez, R., Roque, A., et al. (2003). Shrimp aquaculture development and the environment in the Gulf of California ecoregion. Marine Pollution Bulletin, 46, 806–815.CrossRefGoogle Scholar
  49. Páez-Osuna, F., Guerrero-Galván, S. R., & Ruiz-Fernández, A. C. (1998). The Environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Marine Pollution Bulletin, 36, 65–75.CrossRefGoogle Scholar
  50. Penna, N., Capellacci, S., & Ricci, F. (2004). The influence of the Po River discharge on phytoplankton bloom dynamics along the coastline of Pesaro (Italy) in the Adriatic Sea. Marine Pollution Bulletin, 48, 321–326. doi:10.1016/j.marpolbul.2003.08.007.CrossRefGoogle Scholar
  51. Pope, K. O., Ocampo, A. C., & Duller, C. E. (1991). Mexican site for K/T impact crater? Nature, 351, 105.CrossRefGoogle Scholar
  52. Prastka, K., Sanders, R., & Jickells, T. D. (1998). Has the role of estuaries as sources or sinks of dissolved inorganic phosphorus changed over time? Results of Kd study. Marine Pollution Bulletin, 36, 718–728.CrossRefGoogle Scholar
  53. Pryor, S. C., & Barthelmie, R. J. (2000). Particle dry deposition to water surfaces: Processes and consequences. Marine Pollution Bulletin, 41, 220–231.CrossRefGoogle Scholar
  54. Pryor, S. C., & Sorensen, L. L. (2002). Dry deposition of reactive nitrogen to marine environments: recent advances and remaining uncertainties. Marine Pollution Bulletin, 44, 1336–1340.CrossRefGoogle Scholar
  55. Ribeiro, C. H. A., & Araújo, M. (2002). Mathematical modelling as a management tool for water quality control of the tropical Beberibe estuary, NE Brazil. Hydrobiologia, 475/476, 229–237.CrossRefGoogle Scholar
  56. Rodríguez, J. C., El Atrach, K., Rumbos, E., & Delepiani, A. G. (2004). Resultados experimentales sobre la producción de biogas a través de la bora y el estiércol de ganado. Agronomía Tropical 1997; 47: 441–455. Retrieved October 2004 from http://www.ceniap.gov.ve/pbd/RevistasCientificas/Agronomia%20Tropical/at4704/arti/rodriguez_j.htm.
  57. Seitzinger, S. P., & Sanders, R. W. (1997). Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series, 159, 1–12.CrossRefGoogle Scholar
  58. Spokes, L. J., & Jickells, T. D. (2005). Is the atmosphere really an important source of reactive nitrogen to coastal waters? Continental Shelf Research, 25, 2022–2035. doi:10.1016/j.csr.2005.07.004.CrossRefGoogle Scholar
  59. Strickland, J., & Parsons, T. (1972). A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167, Ottawa, Canada.Google Scholar
  60. Thorburn, P. J., Biggs, J. S., Weier, K. L., & Keating, B. A. (2003). Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems and Environment, 94, 49–58.CrossRefGoogle Scholar
  61. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.CrossRefGoogle Scholar
  62. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.CrossRefGoogle Scholar
  63. US-EPA (1997). Protecting coastal waters from nonpoint source pollution. Washington, DC: US Environmental Protection Agency, 841-F-96-004E.Google Scholar
  64. US-EPA (2000). Folleto informativo de tecnología de aguas residuales. Environmental Protection Agency, Office of Water, EPA 832-F-00-023.Google Scholar
  65. Valiela, I., Foreman, K., LaMontagne, M., Hersh, D., Costa, J., Peckol, P., et al. (1992). Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachussetts. Estuaries, 15, 443–457.CrossRefGoogle Scholar
  66. Valiela, I., Geist, M., McClelland, J., & Tomasky, G. (2000). Nitrogen loading from watersheds to estuaries: Verification of the Waquoit Bay Nitrogen Loading Model. Biogeochemistry, 49, 277–293.CrossRefGoogle Scholar
  67. van Breemen, N., Boyer, E. W., Goodale, C. L., Jaworski, N. A., Paustian, K., Seitzinger, S. P., et al. (2002). Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry, 57/58, 267–293.CrossRefGoogle Scholar
  68. van Puijenbroek, P. J. T. M., Janse, J. H., & Knoop, J. M. (2004). Integrated modelling for nutrient loading and ecology of lakes in The Netherlands. Ecological Modelling, 174, 127–141. doi:10.1016/j.ecolmodel.2004.01.002.CrossRefGoogle Scholar
  69. Vera Manrique, D. A. (1999). Crecimiento y sobrevivencia de semillas de ostión Americano Crassostrea virginica (Gmelin, 1791) cultivado en una granja camaronícola en Yucatán, México. MSc thesis, CINVESTAV Unidad Mérida, México.Google Scholar
  70. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750.Google Scholar
  71. Wasmund, N., Andrushaitis, A., Lysiak-Pastuszak, E., Müller-Karulis, B., Nausch, G., Neumann, T., et al. (2001). Trophic status of the South-Eastern Baltic Sea: A comparison of coastal and open areas. Estuarine, Coastal and Shelf Science, 53, 849–864. doi:10.1006/ecss.2001.0828.CrossRefGoogle Scholar
  72. Whitall, D., Hendrickson, B., & Paerl, H. (2003). Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina. Environment International, 29, 393–399. doi:10.1016/S0160-4120(02)00175-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nancy ArandaCirerol
    • 1
    • 3
  • Francisco Comín
    • 2
  • Jorge Herrera-Silveira
    • 3
  1. 1.Departament de Ecologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Instituto Pirenaico Ecología-CSICZaragozaSpain
  3. 3.Departamento de Recursos del MarCINVESTAV-IPN MéridaMéridaMéxico

Personalised recommendations