Environmental Monitoring and Assessment

, Volume 171, Issue 1–4, pp 671–679

Mercury concentrations in tidal marsh sparrows and their use as bioindicators in Delaware Bay, USA

  • Sarah E. Warner
  • W. Gregory Shriver
  • Margaret A. Pepper
  • Robert J. Taylor
Article

Abstract

Mercury (Hg) contamination from industrial sources is pervasive throughout North America and is recognized by the US Environmental Protection Agency as a health hazard for wildlife and humans. Avian species are commonly used as bioindicators of Hg because they are sensitive to contaminants in the environment and are relatively easy to sample. However, it is important to select the appropriate avian species to use as a bioindicator, which should be directly related to the project objectives. In this study, we tested the utility of two tidal marsh sparrows, Seaside (Ammodramus maritimus) and Saltmarsh (Ammodramus caudacutus) sparrows, as bioindicator species of the extent of Hg contamination in tidal marshes along the Delaware Bay. To determine the possibility of using one or both of these species, we estimated sparrow blood Hg burden in five Delaware watersheds. We found no difference in Hg concentrations between species (F1,133 < 0.01, P = 0.99), but Saltmarsh Sparrows had limited sample size from each site and were, therefore, not appropriate for a Delaware Bay-wide Hg indicator. Seaside Sparrows, however, were abundant and relatively easy to sample in the five watersheds. Seaside Sparrow blood Hg levels ranged from 0.15 to 2.12 ppm, differed among drainages, and were greatest in two drainages distant from the Delaware Bay shoreline (F4,95 = 2.51, P = 0.05). Based on a power analysis for Seaside Sparrow blood Hg, we estimated that 16 samples would be necessary to detect differences among sites. Based on these data, we propose that Seaside Sparrows may be used as a tidal marsh Hg bioindicator species given their habitat specificity, relative abundance, widespread distribution in marsh habitats, ease of sampling, and limited variation in blood Hg estimates within a sampling area. In Delaware Bay, Saltmarsh Sparrows may be too rare (making them difficult to sample) to be a viable tidal marsh Hg bioindicator.

Keywords

Ammodramus Bioindicators Delaware Bay Mercury Tidal Marsh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, L. O. Jr. (1983). The seaside sparrow assemblage: A review of its history and biology. In T. L. Quay, J. B. Funderburg, D. S. Lee Jr., E. F. Potter, & C. S. Robbins (Eds.), The seaside sparrow, its biology and management (pp. 13–17). Raleigh: North Carolina State Biological Surveys.Google Scholar
  2. Barr, J. F. (1973). Feeding biology of common loon (Gavis immer) in oligotrophic lakes of the Canadian Shield. PhD. Thesis, University of Guelph, Ontario, Canada.Google Scholar
  3. Bearhop, S., Ruxton, G. D., & Furness, R. W. (2000). Dynamics of mercury in blood and feathers of Great Skuas. Environmental Toxicology and Chemistry, 19, 1638–1643.CrossRefGoogle Scholar
  4. Bignal, E., & Curtis, D. J. (1989). Choughs and land-use in Europe. Scottish Chough Study Group, Argyll.Google Scholar
  5. Blanco, G., Lemus, J. A., & Grande, J. (2009). Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in Red-billed Choughs. Environmental Research, 109, 405–412.CrossRefGoogle Scholar
  6. Brasso, R. L., & Cristol, D. A. (2007). Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology, 17, 133–141.CrossRefGoogle Scholar
  7. Burger, J. (1993). Metals in avian feathers: Bioindicators of environmental pollution. Review of Environmental Toxicology, 5, 203–311.Google Scholar
  8. Burger, J., & Gochfeld, M. (2001). On developing bioindicators for human and ecological health. Environmental Monitoring and Assessment, 66, 23–46.CrossRefGoogle Scholar
  9. Burgess, N. M. (2005). Mercury in biota and its effects. In M. B. Parsons, & J. B. Pervical (Eds.), Mercury, sources, measurements, cycles, and effects (pp. 235–258). Ottawa: Mineral Association of Canada.Google Scholar
  10. Burgess, N. M., & Meyer, M. W. (2008). Methylmercury exposure associated with reduced productivity in Common Loons. Ecotoxicology, 17, 83–91.CrossRefGoogle Scholar
  11. Chen, C. Y., Dionne, M., Mayes, B. M., Strup, S., & Jackson, B. P. (2009). Mercury bioavilability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environmental Science and Technology, 43, 1804–1810.CrossRefGoogle Scholar
  12. Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50, 498–502.Google Scholar
  13. Cristol, D. A., Brasso, R. L., Condon, A. M., Fovargue, R. E., Friedman, S. L., Hallinger, K. K., et al. (2008). The movement of aquatic mercury through terrestrial food webs. Science, 320, 335–335.CrossRefGoogle Scholar
  14. Curnutt, J. L., Mayer, A. L., Brooks, T. M., Manne, L., Bass, O. L., Fleming, D. M., et al. (1998). Population dynamics of the endangered Cape Sable Seaside Sparrow. Animal Conservation, 1, 11–21.CrossRefGoogle Scholar
  15. Cumbee, J. C., Gaines, K. F., Mills, G. L., Garvin, N., Stephens, W. L., Novak, J. M., et al. (2008). Clapper Rails as indicators of mercury and PCB bioavailability in a Georgia saltmarsh system. Ecotoxicology, 17, 485–494.CrossRefGoogle Scholar
  16. Delaware Department of Natural Resources and Environmental Control [DNREC] (2002). Delaware toxics release inventory report. <http://www.serc.delaware.gov/reports.shtml>. Accessed 18 Nov 2008.
  17. Delaware Department of Natural Resources and Environmental Control [DNREC] (2008). <http://www.fw.delaware.gov/Fisheries/Pages/Advisories.aspx>. Accessed 15 Oct 2008.
  18. Driscoll, C. T., Han, Y.-J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57, 17–28.CrossRefGoogle Scholar
  19. Eagles-Smith, C. A., Ackerman, J. T., Adelsbach, T. L., Takekawa, J. Y., Miles, A. K., & Keister, R. A. (2008). Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry, 27, 2136–2153.CrossRefGoogle Scholar
  20. Elzinga, C. L., Salzer, D. W., Willoughby, J. W., & Gibbs, J. P. (2006). Monitoring plant and animal populations. Malden: Blackwell.Google Scholar
  21. Evers, D. C., & Duron, M. (2006). Developing an exposure profile for mercury in breeding birds of New York and Pennsylvania, 2005. Report BRI 2006-11 submitted to The Nature Conservancy. BioDiversity Research Institute, Gorham, ME.Google Scholar
  22. Evers, D. C., Han, Y.-J., Driscoll, C. T., Kammen, N. C., Goodale, M. W., Lambert, K. F., et al. (2007). Biological mercury hotspots in northeastern United States and southeastern Canada. Bioscience, 57, 29–43.CrossRefGoogle Scholar
  23. Evers, D. C., Savoy, L. J., DeSorbo, C. R., Yates, D. E., Hanson, W., Taylor, K. M., et al. (2008). The adverse effects of environmental mercury loads on breeding Common Loons. Ecotoxicology, 17, 69–81.CrossRefGoogle Scholar
  24. Furness, R. W., & Greenwood, J. D. (1993). Birds as monitors of environmental change. London: Chapman & Hall.Google Scholar
  25. Gochfeld, M., Belant, J. L., Shukla, T., Benson, T., & Burger, J. (1996). Heavy metals in laughing gulls: Gender, age, and tissue differences. Environmental Toxicology and Chemistry, 15, 2275–2283.CrossRefGoogle Scholar
  26. Golden, N. H., & Rattner, B. A. (2003). Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Review of Environmental Contaminant Toxicology, 176, 67–136.Google Scholar
  27. Golden, N. H., Rattner, B. A., McGowan, P. C., Parsons, K. C., & Ottinger, M. A. (2003). Black-crowned night-herons (Nycticorax nycticorax) in Chesapeake and Delaware bays. Environmental Contamination and Toxicology, 70, 385–393.CrossRefGoogle Scholar
  28. Greenlaw, J. S. (1992). Seaside sparrow, Ammodramus maritimus. In K. J. Schneider, & D. M. Pence (Eds.), Migratory nongame birds of management concern in the northeast (pp. 211–232). Newton Corner: US Fish and Wildlife Service.Google Scholar
  29. Greenlaw, J., & Rising, J. (1994). Sharp-tailed sparrow (Ammodramus caudacutus). In A. Pool (Ed.), The birds of North America online. Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online.Google Scholar
  30. Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., Marvin-DiPasquale, M., & Swarzenski, C. M. (2008). Wetland as principle zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154, 124–134.CrossRefGoogle Scholar
  31. Heinz, G. H. (2003). Embryotoxic thresholds of mercury: Estimates from individual mallard eggs. Archives of Environmental Contamination and Toxicology, 44, 257. doi:10.1007/s00244-002-2021-6.CrossRefGoogle Scholar
  32. Hoffman, D. J., Spalding, M. G., & Frederick, P. C. (2005). Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environmental Toxicology and Chemistry, 254, 3078–3084.CrossRefGoogle Scholar
  33. Horne, M. T., Finley, N. J., & Sprenger, M. D. (1999). Polychlorinated biphenyl- and mercury-associated alterations on benthic invertebrate community structure in a contaminated salt marsh in southeast Georgia. Archives of Environmental Contamination and Toxicology, 37, 317–325.CrossRefGoogle Scholar
  34. Hothem, R. L., Trejo, B. S., Bauer, M. L., & Crayon, J. J. (2008). Cliff swallows Petrochelidon pyrrhonota as bioindicators of environmental mercury, Cache Creek Watershed, California. Archives of Environmental Contamination and Toxicology, 55, 111–121.CrossRefGoogle Scholar
  35. Kahle, S., & Becker, P. H. (1999). Bird blood as bioindicator for mercury in the environment. Chemosphere, 39, 2451–2457.CrossRefGoogle Scholar
  36. Kenow, K. P., Meyer, M. W., Hines, R. K., & Karasov, W. H. (2007). Distribution and accumulation of mercury in tissues of captive-reared Common Loon (Gavia immer) chicks. Environmental Toxicology and Chemistry, 26, 1047–1055.CrossRefGoogle Scholar
  37. Kingery, H. E. (1996). American Dipper (Cinclus mexicanus). In A. Poole (Ed.), The birds of North America online. Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online.Google Scholar
  38. Kupper, L. L., & Hafner, K. B. (1988). How appropriate are popular sample size formulas? The American Statistician, 43, 101–105.CrossRefGoogle Scholar
  39. Mason, R. P., Abbot, M. L., Bodaly, R. A., Bullock, O. R., Driscoll, C. T., Evers, D., et al. (2005). Monitoring the response to changing mercury deposition. Environmental Science and Technology, 39, 14A–22A.CrossRefGoogle Scholar
  40. National Academy of Sciences Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology, National Research Council (2000). Toxicological effects of methylmercury. Washington, DC: National Academy Press.Google Scholar
  41. National Oceanic and Atmospheric Administration (NOAA) (2001). Magnitude and extent of contaminate d sediment and toxicity in Delaware Bay. NOS ORCA 148 Technical Report. Centers for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Sciences, Silver Spring, Maryland, USA.Google Scholar
  42. National Wildlife Federation (NWF) (2005). Mercury in the mid-atlantic: Are the states meeting the challenge. 2005 Mid Atlantic Mercury Report Card <http://www.nationalwildlifefederation.org/wildlife/pdfs/MercuryMidAtlantic.pdf> Accessed 18 Nov 2008.
  43. Novak, J. M., Gaines, K. F., Cumbee, J. C., Mills, J. L. Jr., Rodriguez-Navarro, A., & Romanek, C. S. (2006). The Clapper Rail as an indicator species of estuarine marsh health. Studies in Avian Biology, 32, 270–281.Google Scholar
  44. O’Halloran, J., Irwin, S., Harrison, S., Smiddy, P., & O’Mahony, B. (2003). Mercury and organochlorine content of Dipper (Cinclus cinclus) eggs in south-west Ireland: Trends during 1990–1999. Environmental Pollution, 123, 85–93.CrossRefGoogle Scholar
  45. Ormerod, S. J., & Tyler, S. J. (1987). Dippers (Cinclus cinclus) and grey wagtails (Motacilla cinerea) as indicators of stream acidity in upland Wales. In A. W. Diamond, & F. L. Filion (Eds.), The value of birds (pp. 191–208). Cambridge: International Council of Bird Preservation, ICBP Technical Publication No. 6.Google Scholar
  46. Ormerod, S. J., & Tyler, S. J. (1990). Environmental pollutants in the eggs of Welsh dippers Cinclus cinclus: A potential monitor of organochlorine and mercury contamination in upland rivers’. Bird Study, 37, 171–176.CrossRefGoogle Scholar
  47. Post, W. (1974). Functional analysis of space-related behavior in the Seaside Sparrow. Ecology, 55, 564–575.CrossRefGoogle Scholar
  48. Post, W., & Greenlaw, J. S. (1994). Seaside Sparrow (Ammodramus maritimus). In A. Poole (Ed.), The birds of North America Online. Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online.Google Scholar
  49. Post, W., & Greenlaw, J. S. (2006). Nestling diets of coexisting salt marsh sparrows: Opportunism in a food-rich environment. Estuaries and Coasts, 29, 765–775.Google Scholar
  50. Rattner, B. A., Golden, N. H., & Toschik, P. C. (2008). Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays. Archives of Environmental Contamination Toxicology, 54, 114–122.CrossRefGoogle Scholar
  51. Rimmer, C. C., Mcfarland, K. P., Evers, D. C., Miller, E. K., Aubury, Y., Busby, D., et al. (2005). Mercury concentrations in Bicknell’s Thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology, 14, 223–240.CrossRefGoogle Scholar
  52. Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio: A Journal for the Human Environment, 36, 12–18.CrossRefGoogle Scholar
  53. Shriver, W. G., & Gibbs, J. P. (2004). Projected effects of sea-level rise on the population viability of Seaside Sparrows (Ammodramus maritimus). In H. R. Akcakaya, et al. (Eds.), Species conservation and management: Case studies. Oxford University Press: Oxford.Google Scholar
  54. Shriver, W. G., Evers, D., Hodgman, T. P., MacCulloch, B. J., & Robert, J. T. (2006). Mercury in sharp-tailed sparrows breeding in coastal wetlands. Environmental Bioindicators, 1, 129–135.CrossRefGoogle Scholar
  55. SPSS (2008). Statistical software version 16.0 for windows. Chicago: SPSS.Google Scholar
  56. Taylor, D. L. (1983). Management of the Cape Sable Sparrow. In T. L. Quay, J. B. Funderburg, D. S. Lee Jr., E. F. Potter, & C. S. Robbins (Eds.), The Seaside Sparrow: Its biology and management (pp. 147–152). North Carolina Biological Survey Occasional Paper 1983–5.Google Scholar
  57. Thompson, D. R., Hamer, K. C., & Furness, R. W. (1991). Mercury accumulation in Great Skuas (Catharacta Skua) of known age and sex and its effects upon breeding and survival. Journal of Applied Ecology, 28, 672-684.CrossRefGoogle Scholar
  58. Tiner, R. W. (2001). Delaware’s wetlands: Status and recent trends. Hadley: US Fish and Wildlife Service.Google Scholar
  59. US Environmental Protection Agency (1997). Mercury study report to Congress. Washington, DC: USEPA. Executive Summary 1:1-98. EPA-452/R-97-003.Google Scholar
  60. US Environmental Protection Agency (1998). SW-846 Method 7473. Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Washington, DC: USEPA.Google Scholar
  61. US Environmental Protection Agency (2000). Mercury research strategy. Technical report: EPA/600/R-00/073, United States Environmental Protection Agency, Office of Research and Development, Washington, DC.Google Scholar
  62. Walters, M. J. (1992). A shadow and a song: The struggle to save an endangered species. Post Hills: Chelsea Green.Google Scholar
  63. Wayland, M., Kneteman, J., & Crosley, R. (2006). The American Dipper as a bioindicator of Selenium contamination in a coal mine-affected stream in West-Central Alberta, Canada. Environmental Monitoring and Assessment, 123, 285–298.CrossRefGoogle Scholar
  64. Werner, H. W. (1975). The biology of the Cape Sable sparrow. Report to USDI Fish and Wildlife Service Everglades National Park, Homestead.Google Scholar
  65. Westervelt, K., Largay, E., Coxe, R., McAvoy, W., Perles, S., Podniesinski, G., Sneddon, L., & Walz, S. K. (2006). A guide to the natural communities of the Delaware Estuary: Version 1. NatureServe. Arlington, Virginia. Retrieved from: http://www.delawareestuary.org/pdf/ScienceReportsbyPDEandDELEP/GuideNaturalComm_v1.pdf.
  66. Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sarah E. Warner
    • 1
  • W. Gregory Shriver
    • 1
  • Margaret A. Pepper
    • 1
  • Robert J. Taylor
    • 2
  1. 1.Department of Entomology and Wildlife EcologyUniversity of DelawareNewarkUSA
  2. 2.Trace Element Research LabTexas A&M UniversityCollege StationUSA

Personalised recommendations