Environmental Monitoring and Assessment

, Volume 171, Issue 1–4, pp 321–344 | Cite as

Environmental repercussions of cane-sugar industries on the Chhoti Gandak river basin, Ganga Plain, India

  • Vikram BhardwajEmail author
  • Dhruv Sen Singh
  • Abhay K. Singh


Chhoti Gandak river basin, situated in the Ganga Plain, is one of India’s most productive cane-sugar industrial belts. Soil and groundwater samples were collected to investigate the impacts of these industries on the environment of the Chhoti Gandak river basin with special reference to soil and water. The results show that concentration of most metals are affected by industrial activities and surrounding agricultural practices. It is evidenced by increased heavy metal concentration in the soils as well as in the aquifers. Metals such as Pb, Cu, and Zn in the soil around the industrial sets are found significantly higher than their normal values in the soil. Metals like Fe and Mn in the groundwater are more than the permissible limit prescribed by the World Health Organization. In this study, an attempt was made to distinguish between the naturally occurring and anthropogenically induced metals in the soil. Analysis of geochemical properties, disposal of industrial wastes, inadequate application of agrochemicals, and their impact on environment indicate the sustainable implementation of integrated wastewater management plan in these industrial sets and also in similar situations.


Cane-sugar industry Chhoti Gandak river Soil contamination Groundwater contamination Toxic metals Industrial pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriano, D. C. (1992). Biogeochemistry of trace metals. In S. J. Buckland, H. K. Ellis & R. T. Salter (Eds.), Ambient concentrations of selected organochlorines in soils. Organochlorines programme. Wellington, New Zealand: Ministry for the Environment 1998 (96 pp.). Boca Raton, Florida: Lewis.Google Scholar
  2. Alloway, B. J. (1995). Heavy metals in soils. London: Blackie.Google Scholar
  3. Anderson, P. R., & Christensen, T. H. (1998). Distribution of coefficient of Cd, Co, Ni and Zn in soils. Journal of Soil Science, 39, 15–22.CrossRefGoogle Scholar
  4. APHA, AWWA, WPCF (1992). Standard methods for the examination of water and waste water (16th ed.). Washington DC: APHA.Google Scholar
  5. Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater and pollution. Rotterdam: AA Balkema.Google Scholar
  6. Applin, K. R., & Zhao, N. (1989). The kinetics of Fe(II) oxidation and well screen encrustation. Ground Water, 27, 168–174.CrossRefGoogle Scholar
  7. Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soil by trace elements. The Science of Total Environment, 264, 127–139.CrossRefGoogle Scholar
  8. Berner, E. K., & Berner, R. A. (1987). The global water cycle: Geochemistry and environment. Englewood Cliffs: Prentice-Hall.Google Scholar
  9. Bhatt, K. B., & Saklani, S. (1996). Hydrogeochemistry of the upper Ganges river, India. Journal of Geological Society of India, 48, 171–182.Google Scholar
  10. BIS (1991). Bureau of Indian Standards—Indian standard specification for drinking water, IS:10500.Google Scholar
  11. Bittel, J. E., & Miller, R. J. (1974). Lead, cadmium and calcium selectivity coefficients on montmorillonite, illite and kaolinite. Journal of Environmental Quality, 3, 243–254.CrossRefGoogle Scholar
  12. Bowen, H. J. M. (1979). The environmental chemistry of the elements. London: Academic.Google Scholar
  13. Canter, L. W. (1997). Nitrate in groundwater. New York: Lewis.Google Scholar
  14. Cascales-Pujalte, J. A. (1993). Estudio de la Materia Particulada Sedimentable en Cartagena (274 pp.). Ph.D. thesis. Department of Chemical Engineering Cartagena, University of Murcia.Google Scholar
  15. Chang, A. C., Page, A. L., & Warneke, J. E. (1987). Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. Journal of Environmental Quality, 16, 217–221.CrossRefGoogle Scholar
  16. Christenson, S., & Rae, A. (1993). Ground-water quality in the Oklahoma City urban area. In W. M. Alley (Ed.), Regional groundwater quality (pp. 589–611). New York: Van Nostrand Reinhold.Google Scholar
  17. Christie, P., & Beattie, J. A. M. (1989). Grassland soil microbial biomass and accumulation of potentially toxic metals from long term slurry application. Journal of Applied Ecology, 26, 597–612.CrossRefGoogle Scholar
  18. Cobb, G. P., Sands, K., Waters, M., Wixson, B. G., & Doward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry, 19, 600–607.CrossRefGoogle Scholar
  19. Denny, P. (1987). Monitoring of heavy metals—a proposed strategy for developing countries. In T. C. Huchinson, & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment. New York: Wiley.Google Scholar
  20. Drever, J. I. (1997). The geochemistry of natural waters (3rd ed.). New Jersey: Prentice Hall.Google Scholar
  21. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology & Biochemistry, 30, 1389–1414.CrossRefGoogle Scholar
  22. Govil, P. K., Rao, T. G., & Krishna, A. K. (1998). Arsenic contamination in Patancheru industrial area, Medak District. Andhra Pradesh. Journal of Environmental Geochemistry, 1, 5–9.Google Scholar
  23. Govil, P. K., Reddy, G. L. N., & Krishna, A. K. (2001). Contamination of soil due to heavy metals in Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology, 41, 461–469.CrossRefGoogle Scholar
  24. Hakanson, L. (1980). An ecologica1 risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  25. Handa, B. K. (1975). Geochemistry and genesis of fluoride containing groundwater in India. Ground Water, 13, 275–281.CrossRefGoogle Scholar
  26. Harris, M. L., Wilson, L. K., Elliott, J. E., Bishop, C. A., Tomlin, A. D., & Henning, K. V. (2000). Transfer of DDT and metabolites from fruit orchard soils to American robins (Turdus migratorius) twenty years after agricultural use of DDT in Canada. Archives of Environmental Contamination and Toxicology, 39, 205–220.CrossRefGoogle Scholar
  27. Hem, J. D. (1959). Study and interpretation of the chemical characteristics of natural water (pp. 1473). U.S. Geological Survey Water-Supply.Google Scholar
  28. Huisman, D. J., Vermeulen, F. J. H., Baker, J., Veldkamp, A., Kroonenberg, S. B., & Klaver, G. T. (1997). A geological interpretation of heavy metal concentrations in soils and sediments in the Southern Netherlands. Journal Geochemical Exploration, 59, 163–174.CrossRefGoogle Scholar
  29. Jeong, C. H. (2001). Effect of land use and urbanization of hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, 253, 194–210.CrossRefGoogle Scholar
  30. Kumar, D., & Alappat, B. J. (2005). Analysis of leachate pollution index and formulation of sub-leachate pollution indices. Waste Management Research, 23(3), 230–239.CrossRefGoogle Scholar
  31. Kumar, S. C., & Anderson, H. W. (1993). Nitrogen isotopes as indicators of nitrate sources in Minnesota sand plane aquifers. Ground Water, 31, 260–271.CrossRefGoogle Scholar
  32. Kumar, M., Ramanathan, A. L., Rao, M., & Kumar, B. (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025–1039.CrossRefGoogle Scholar
  33. Kumar, S., Singh, I. B., Singh, M., & Singh, D. S. (1995). Depositional pattern in upland surface of Central Ganga Plain near Lucknow. Journal of Geological Society of India, 46, 545–555.Google Scholar
  34. Mahlknecht, J. (2003). Estimation of recharge in the independence aquifer, central Mexico, by combining geochemical and groundwater flow models. Ph.D. thesis, Institute of Applied Geology, University of Agriculture and Life Sciences (BOKU), Vienna, Austria.Google Scholar
  35. Mahlknecht, J., Steinich, B., & Navarro de, L. L. (2004). Groundwater chemistry and mass transfers in the independence aquifer, central Mexico by using multivariate statistics and mass balance models. Environmental Geology, 45, 781–795.CrossRefGoogle Scholar
  36. Matthess, G., & Harvey, J. C. (1982). The properties of groundwater. New York: Wiley.Google Scholar
  37. McGrath, S. P. (1994). Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In S. M. Ross (Ed.), Toxic metals in soil–plant systems (pp. 242–274). Chichester: Wiley.Google Scholar
  38. McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.CrossRefGoogle Scholar
  39. Merrington, G., Rogers, S. L., & Van, Z. L. (2002). The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard. Australian Journal Soil Research, 40, 749–759.CrossRefGoogle Scholar
  40. Merry, R. H., Tiller, K. G., & Alston, A. M. (1986). The effects of soil contamination with copper, lead and arsenic on the growth and composition of plants. Plant Soil, 95, 255–269.CrossRefGoogle Scholar
  41. Merwin, I., Pruyne, P. T., Ebel, J. G., Manzell, K. L., & Lisk, D. J. (1994). Persistence, phytotoxicity and management of arsenic, lead and mercury residues in old orchard soils of New York State. Chemosphere, 29, 1361–1367.CrossRefGoogle Scholar
  42. Mohindra, R. & Parkash, B. (1990). Clay mineralogy of the soils of Gandak megafan and adjoining area, Middle Gangetic Plain, India. Science Geological Bulletin, 43(2–3), 193–203 (Paper presented at the 9th International Clay Conference, Strasbourg).Google Scholar
  43. Morgan, M. D., Moran, J. M., & Wiersma, J. H. (1993). Environmental science: Managing biological resources (Vol. II). Dubuque: Wm C Brown.Google Scholar
  44. Nagaraju, A., & Karimulla, S. (2002). Accumulation of elements in plants and soils in and around Nellore mica belt, Andhra Pradesh, India—a biogeochemical study. Environmental Geology, 41, 852–860.CrossRefGoogle Scholar
  45. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311, 205–219.CrossRefGoogle Scholar
  46. Olade, M. A. (1987). Heavy metal pollution and the need for monitoring: Illustrated for developing countries in West Africa. In T. C. Hutchinson & K. M. Meema (Eds.), Lead, mercury, cadmium and arsenic in the environment. New York: Wiley.Google Scholar
  47. Pascoe, E. H. (1917). A manual of geology of India and Burma. Delhi: Government of India Publication.Google Scholar
  48. Pawar, N. J. & Nikumbh, J. D. (1999). Trace element geochemistry of ground water from Behedi basin, Nasik district, Maharashtra. Journal of Geological Society of India, 54, 501–514.Google Scholar
  49. Pawar, N. J., Pondhe, G. M., & Patil, S. F. (1998). Groundwater pollution due to sugar-mill effluent, at Sonai, Maharashtra, India. Environmental Geology, 34(2/3), 151–158.CrossRefGoogle Scholar
  50. Pawar, N. J., & Shaikh, I. J. (1995). Nitrate pollution of groundwaters from basaltic aquifers, Deccan Trap Hydrologic Province, India. Environmental Geology, 25, 197–204.CrossRefGoogle Scholar
  51. Pierzynski, G. M., Sims, J. T., & Vance, G. F. (1994). Soils and environmental quality. Boca Raton: Lewis.Google Scholar
  52. Pimentel, D. (1993). World soil erosion and conservation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Pinay, G., Fabre, A., Vervier, P., & Gazelle, F. (1992). Control of C, N, P distribution in soils of riparian forests. Landscape Ecology, 6, 121–132.CrossRefGoogle Scholar
  54. Prohic, E., Davis, J. C., & Hansberger, G. (1997). Geochemical patterns in soils of the karst region, Croatia. Journal Geochemical Exploration, 60, 139–155.CrossRefGoogle Scholar
  55. Sanders, J. R., McGarth, S. P., & Adams, T. (1987). Zinc, Cu and Ni concentration in soil extracts and crops grown on four soils treated with metal loaded sewage sludges. Environmental Pollution, 44, 193–210.CrossRefGoogle Scholar
  56. Singh, D. S. & Singh, I. B. (2005). Facies architecture of the Gandak Megafan, Ganga Plain, India. Special Publication of Journal of Palaeontological Society of India, 2, 125–140.Google Scholar
  57. Singh, I. B., Srivastava, P., Shukla, U., Sharma, S., Sharma, M., Singh, D. S., et al. (1999). Upland interfluve (Doab) deposition: Alternative model to muddy overbank deposits. Facies, 40, 197–210.CrossRefGoogle Scholar
  58. Smolders, A. J. P., Hudson-Edwards, K. A., Van der Velde, G., & Roelofs, J. G. M. (2004). Controls on water chemistry of the Pilcomayo river (Bolivia, South-America). Applied Geochemistry, 19, 1745–1758.CrossRefGoogle Scholar
  59. Srivastava, P. C. & Gupta, U. C. (1996). Trace element tolerance. In P. C. Srivastava & U. C. Gupta (Eds.), Trace elements in crop production (pp. 66–72). Lebanon: Science Publishers.Google Scholar
  60. Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302.CrossRefGoogle Scholar
  61. Subba Rao, N. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41, 552–562.CrossRefGoogle Scholar
  62. Subramanian, V. & Saxena, K. (1983). Hydrogeochemistry of groundwater in the Delhi region of India, relation of water quality and quantity. In Proceedings of the Hamburg Symposium IAHS Pub. (No. 146, 307–316).Google Scholar
  63. Thornton, I. (1991). Metal contamination in urban areas. In P. Bullock (Ed.), Soils in the urban environment. Cambridge: Cambridge University Press.Google Scholar
  64. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–191.CrossRefGoogle Scholar
  65. Van-Gaans, P. F. M., Vriend, S. P., Bleyerveld, S., Schrage, G., & Vos, A. (1995). Assessing environmental soil quality in rural areas. A baseline study in the Province of Zeeland, The Netherlands and reflections on soil monitoring network designs. Environmental Monitoring and Assessment, 34, 73–102.CrossRefGoogle Scholar
  66. Vazquez, F. G., Sharma, V. K. & Perez-Cruz, L. (2002). Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico. Environmental Geology, 42, 41–46.CrossRefGoogle Scholar
  67. Webber, M. D., & Wang, C. (1995). Industrial organic compounds in selected Canadian soils. Canadian Journal of Soil Science, 75, 513–524.Google Scholar
  68. White, A. F., Benson, S. M., Yee, A. W., Woolenberg, H. A., & Flexser, S. (1991). Ground water contamination at the Kesterson reservoir, California—geochemical parameters influencing selenium mobility. Water Resource Research, 27, 1085–1098CrossRefGoogle Scholar
  69. WHO (1993). Guidelines for drinking-water quality, V.1, recommendations. Geneva: World Health Organization.Google Scholar
  70. Williams, D. D., Williams, N. E., & Cay, Y. (1999). Road salt concentration of groundwater in a major metropolitan area and development of a biological index to monitor its impacts. Water Research, 34, 127–138.CrossRefGoogle Scholar
  71. Zelles, L., Bai, Q. Y., Ma, R. X., Rackwitz, R., Winter, K., & Beese, F. (1994). Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally-managed soils. Soil Biology and Biochemistry, 26, 439–446.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vikram Bhardwaj
    • 1
    Email author
  • Dhruv Sen Singh
    • 1
  • Abhay K. Singh
    • 2
  1. 1.Centre of Advanced Study in GeologyUniversity of LucknowLucknowIndia
  2. 2.Central Institute of Mining and Fuel ResearchDhanbadIndia

Personalised recommendations